Fault-Tolerance with Multimodule Routers

Suresh Chalasani

ECE Department
University of Wisconsin
Madison, W1 53706-1691

suresh@ece.wisc.edu

Abstract. The current multiprocessors such as Cray T3D
support interprocessor communication using partitioned
dimension-order routers (PDRs). In a PDR implemen-
tation, the routing logic and switching hardware is par-
titioned into multiple modules, with each module suit-
able for implementation as a chip. This paper proposes
a method to incorporate fault-tolerance into such routers
with simple changes to the router structure and logic. The
previously known fault-tolerant routing methods assume
centralized crossbar based routers and are not applicable
to multiprocessors with PDRs. The proposed technique
works for convex fault model, using only local knowledge
of faults. Using the proposed techniques and as few as four
virtual channels per physical channel, torus networks with
PDRs can handle faults without compromising deadlock-
and livelock-freedom. Simulations for 2-dimensional torus
and mesh networks show that the resulting fault-tolerant
PDRs have performances similar to those of the crossbar
based routers.

1 Introduction

Many recent experimental and commercial multicomput-
ers and multiprocessors [26, 22, 12] use direct-connected
networks with grid topology. A (k,n)-torus network has
an n-dimensional grid structure with k& nodes (a node is a
processor-memory-router element) in each dimension such
that every node is connected to two other nodes in each
dimension by direct communication links. Majority of
these multicomputers use dimension-order or e-cube rout-
ing with wormhole (WH) switching [17]. Wormbhole is a
form of cut-through routing in which blocked messages
hold on to the channels they already reserved.

In practice, the e-cube routing is implemented using
multiple modules such that each module handles routing of
messages in exactly one dimension. We refer to this imple-
mentation as the multimodule or partitioned dimension-
order router (PDR) implementation [18, 13, 26, 22, 12].
For example, the Cray T3D uses a 3D torus network with
each PDR implemented using three chips—one chip for
each dimension module. An alternative router implemen-
tation is to use centralized crossbars to handle the switch-
ing in each router. While crossbar implementations can
offer adaptivity and more flexibility, each crossbar chip re-
quires more number of pins than the module chips used

*Chalasani’s research has been supported in part by a grant
from the Graduate School of UW-Madison and the NSF grant CCR-
9308966. Boppana’s research has been partially supported by NSF
Grant CCR-9208784.

Proceedings of the 1996 International Symposium on High-
Performance Computer Architecture, February 1996

*

Rajendra V. Boppana

Computer Science Division

The Univ. of Texas at San Antonio

San Antonio, TX 78249-0664

1

boppana@runner.utsa.edu

as the bulding block for PDR implementations. Thus, for
the same technology, a PDR implementation yields wider
channels compared to the crossbar implementation.

While the e-cube is simple to implement and provides
high throughput for uniform traffic, it cannot handle even
simple node or link faults due to its nonadaptive rout-
ing. Adaptive, fault-tolerant cut-through routing algo-
rithms has been the subject of extensive research in re-
cent years [11, 19, 15, 21, 24, 1, 4, 7, 20, 2, 16, 6]. These
results implicitly or explicitly assume routers with central-
ized crossbars. Therefore, such techniques are not suitable
for multiprocessors with PDRs. Several other results (see,
for example, [23, 25] and the references therein) exploit the
rich interconnection structure of hypercubes and are not
suitable for high-radix, low-dimensional tori.

In this paper, we propose a technique to incorportate
fault-tolerance into networks with PDRs implemented us-
ing multiple chips. Our approach is to provide interproces-
sor communication among the fault-free nodes, rather than
to recreate or simulate the original topology of a faulty
network. We have previously proposed similar techniques
for fault-tolerant routing in multicomputer networks with
crossbar based routers [4, 7, 9]. The main contribution
of this work is to show that partitioned dimension-order
routers also can be enhanced for fault-tolerant routing with-
out using crossbars. We show that with a small increase in
the resources and simple changes to the router organiza-
tion and routing logic, multiple block faults can be handled
without compromising livelock and deadlock freedom.

Our technique works with local knowledge of faults
(each fault-free node knows only the status of its and its
neighbors’ links), handles multiple faults, and guarantees
livelock- and deadlock-free routing of all messages. Our
fault model allows multiple node and link faults as long
as the fault regions are convex in shape—rectangular in
2D tori, cubic in 3D tori, etc. The convex fault model
is simple enough to provide modular routing, yet power-
ful enough to model node and printed-circuit-board level
faults. We apply our techniques to torus networks and
show that, with as few as four virtual channels per physi-
cal channel, and some modifications to the interconnection
of dimension-modules, PDRs can be used for fault-tolerant
routing.

Section 2 gives an overview of dimension-order routers.
Section 3 describes the fault-model. Section 4 describes
the changes to the router required to handle faults. Sec-
tion 5 gives the required modifications to the routing logic.
Section 6 presents simulation results on the performance of
mesh and torus networks under faults. Section 7 concludes
this paper.

I Y

Figure 1: Organization of a partitioned dimension-order
router for 3D torus and mesh networks.

2 Partitioned Dimension-Order Routers

A (k,n)-torus has n dimensions—DIMp, ..., DIMp_1, k
nodes per dimension, and N = k" nodes. Each node is
uniquely indexed by a radix-k n-tuple. Each node is con-
nected via communication links to two other nodes in each
dimension. The neighbors of the node ¢ = (zp—_1,...,%0)
in dimension ¢ are (xp—1,...,%Zi+1,%; £ 1,2i-1,...,%0),
where addition and subtraction are performed modulo k.
Fach link provides full-duplex communication using two
unidirectional physical channels. A link is said to be a
wraparound linkif it connects nodes (xn_l, ey Tig1,0,@520,
..yzo) and (Zn—1,...,%ig1,k —1,xi_1,..., %) in dimen-
sion ¢, 0 <1 < n. Each node is a combination of processor,
memory, and router. Since our interest in this paper is in
the routing part of a node, we use node and router synony-
mously. To illustrate our technique, we use a 3D torus as
a typical network. However, our results can be extended
to multidimensional tori and meshes in a straight forward
manner.

As per dimension order routing, each message com-
pletes the required hops in dimension DIM; before taking
any hops in DIM;, 0 < ¢ < 7 < n, where n is the number
of dimensions in the network. A three-dimensional PDR
is shown in Figure 1.

The Cray T3D implements such a partitioned dimension-
order router in each node using three identical router chips.
A pair of 24-bit unidirectional lines (16—bit data 4+ 8-bit
control) interconnect appropriate dimension chips in adja-
cent nodes in the Cray T3D router. In addition, each chip
has an input from the network interface (for injection of
messages) or from previous dimension router chip and an
output to the next dimension router chip or to the network
interface (for delivery of messages). So, each router chip
has three incoming 24-bit channels and three outgoing 24-
bit channels. Not counting pins for power supply, ground,
etc., each router chip requires at least 144 pins for data
and control of virtual channels.

For a crossbar based router implementation, one chip
is used per router. Such a chip requires at least 336 pins—
2*¥6*24 = 288 pins for internode-connections and 2 * 24 =
48 pins for injection and consumption channels. Thus PDR
implementations have lower pin requirements per router
chip. For the same number of pins per chip, PDRs can pro-
vide wider channels. The main disadvantages of PDRs are
increased chip count and additional bottlenecks in the form
of interchip links used by messages that need to change
their dimensions.

Since channels are the resources for which messages

compete in wormhole routing, cyclic dependencies and dead-
locks in a torus are avoided by simulating two virtual chan-

nels on each physical channel [17]. (The Cray T3D actu-

ally simulates four virtual channels to handle two distinct

classes of messages with two virtual channels per class of

messages.)

Another interesting feature of the Cray T3D router is
that its routing logic is programmable. Routing tables,
which contain routes for each destination, can be loaded
into the network interface by software. In fact, this ability
to alter routing tables together with the wraparound links
in the torus topology can be used to provide a rudimentary
fault-tolerant routing to handle one fault, for example, in
a row [12].

3 Faults in Networks

We consider permanent failures of nodes and links that do
not disconnect the network. We model multiple simulta-
neous faults, which could be connected or disjoint. We
assume that the mean time to repair faults is quite large
and that the existing fault-free nodes shoud be used pro-
ductively in the mean time. We assume that all faults
are nonmalicious faults; that is, a failed component simply
ceases to work. Therefore, messages are generated by and
for processors with non-faulty nodes.

Detection and isolation of faults is done easily because
fault information is kept locally. Each node is required
to detect faults on its incoming physical channels and its
router chips. A node can detect its faulty components, if
any, using a suitable self-test sequence periodically. When
node detects a fault within its processor, router or other
component, it simply stops sending signals on all of its
outgoing channels. A healthy node sends status signals to
its neighbors on its outgoing physical channels and mon-
itors status signals sent by its neighbors on its incoming
physical channels. Missing or incorrect sequences of sig-
nals indicate malfunction of the link or the node sending
them. The nodes at the end of a malfunctioning link stop
using that link. When a node detects a faulty link, it re-
ports this fault to its neighbors reachable via the fault-free
links. We develop fault-tolerant algorithms, for which it is
sufficient if each non-faulty node knows the status of the
links incident on it and its neighbors. Another approach
for fault detection is given in [2].

We model block faults, as per which the set of faulty
nodes can be partitioned into disjoint subsets such that
each subset forms an n-D cube in an nD torus. Examples
of block faults include a 3D cube in a 3D torus, a rectangle
in a 2D torus, and so on. Figure 2 shows example block
faults in 2D and 3D torus networks.

The block model is simple, yet models two common
fault scenarios: single faults, and multiple dependent faults,
which can occur, for example, if a board (which has a block
of nodes) loses its power-supply or is removed for repair.
In addition, the routing techniques developed here can be
used to provide a secure computation environment within
a multiprogramming mode, where several users share the
processors and the network. To provide a secure comput-
ing environment, a block of nodes may be allocated such
that the nodes and the links among them are not used by
other computations or messages resulting from them. By
treating such a block of processors and links as faulty in
routing the other messages, the proposed techniques can

be applied for on-the-fly allocation and release of blocks of
nodes for special-purpose computations.

A simple characterization of block faults is that a fault-
free node may have at most one faulty neighbor. Using this
rule, any fault pattern can be blocked: if a node has more
than one neighbor faulty, it marks itself faulty. Thus a
fault is blocked within a finite number of steps, bounded
by the diameter of the network.

Fault rings. Consider a 2D torus with a block fault.
This block fault is enclosed by a ring of nonfaulty nodes
and links; the smallest such ring is known as the fault-ring
for the block fault. In a 3D torus, the block fault is a
3D cube such that any 2D cross-section of the fault is a
2D block fault. Therefore, for a block fault in a 3D torus,
several fault rings are formed, one for each possible 2D
cross section of the fault. Examples of fault rings for 2D
and 3D tori are shown in Figure 2.

A fault-ring corresponding to a 2D fault-block can be
formed in a distributed manner using a two-step process.
In the first step, each node that detected a faulty neighbor
sends this information to its neighbors in other dimensions.
In the second step, based on the set of messages received
in the first step, each node that is to be on the f-ring de-
termines its neighbors on the f-ring [4]. In 3D or higher
dimensional tori, a node may be on multiple fault rings of
a fault block. But, a link can be on at most one fault ring.

The concept of fault rings extends to faults in higher
dimensional tori. For each nD block fault, several fault
rings, one for each 2D cross section of the fault, are formed
and used in routing messages around faults.

An f-ring represents a two-lane path to a message that
needs to go through the block fault contained by the f-
ring. Thus an f-ring simulates 4 paths to route messages
in two dimensions. Therefore, some physical channels in
an f-ring may need to handle traffic many times the traf-
fic of a channel not on any f-ring. Routing around one or
more fault-rings creates additional possibilities for dead-
locks to occur. Hence, wormhole routing algorithms must
be designed to avoid these deadlocks also.

Two f-rings are said to overlap if they share one or
more links. In this paper we consider block faults that
give rise to nonoverlapping f-rings. The techniques used
for nonoverlapping f-rings can be extended to handle over-
lapping f-rings [8].

4 Modifications to Partitioned Dimension-Order
Routers

To tolerate faults under the block-fault model, the router
design has to be modified. Two types of modifications to
the router are needed: modifications to the router organi-
zation, and modifications to the routing logic. We discuss
modifications to the router organization below, and modi-
fications to the router logic in the next section.

If a message is blocked by a fault, then alternate di-
mensions must be used to route the message around the
fault. Therefore, a message may need to travel in dimen-
sion ¢ after traveling in dimension j, where 3 > 2. To
handle this, we provide new connections from the output
of router chip i to the inputs of router chips (¢4 1) mod n
and (¢ + 2) mod n, for 0 < ¢ < n, where n is the number
of dimensions. These additional connections require mul-
tiplexers. At the input of router chip #, a multiplexer is

AN
AN

D)
\O

.
madannannns

Figure 2: Examples of block faults in 2D and 3D torus
networks. Shaded nodes and the links incident on them are
faulty. Dashed lines in the 2D torus indicate faulty links.
For the 3D torus, wraparound links and faulty links are not
shown for clarity, and internal healthy links are indicated
by dotted lines. Thick lines indicate the corresponding
fault rings.

used to multiplex between the outputs from router chips
(1 — 1) mod n and (¢ — 2) mod n. If a node is not on
an f-ring, this multiplexer is permanently set to route the
output from (¢ — 1) mod n router chip to the input of
router chip :. At the input of router chip 0, however, the
multiplexer also has to include the injection channel as the
input. These changes are indicated in Figure 3, where the
required changes are shown using thick lines.

Cost of modifications. We consider cost in terms of the
increase in the signal pins to router chips and additional
hardware required by these modifications. The extra hard-
ware required is one multiplexer per dimension and addi-
tional routing of wires among the chips. Also, a message
sees an extra multiplexer delay at its injection into the
network and whenever it changes its dimension of travel.
However, we expect this delay to be not too significant
compared to the queueing delay at moderate to high traf-
fic loads. This additional delay may not affect the network
throughput, since router chips are designed to operate in a
pipelined fashion. This issue is further discussed in Section
6.

_.l\
1)

Figure 3: Modifications to the 3D PDR to support fault-tolerant routing.

5 Fault-Tolerant Routing

We describe our technique for the PDRs used in a 3D torus
network. Extension of these techniques to higher dimen-
sions is discussed later. When there are no faults, the
original dimension-order routing is used. Even when there
are faults in the network, each message is routed using
the dimension-order routing as much as possible. When
a message arrives at a node, the next hop for that mes-
sage is specified by this algorithm. If that hop i1s on a
faulty link, then the message is blocked by the fault. The
routing logic is enhanced to handle such situations so that
the message is routed around faults. Once the message is
routed around faults, the dimension-order routing is used
to route the message until it reaches its destination or is
blocked again. It is noteworthy that the modified routing
logic 1s used only when a message is blocked by a fault. A
message is a misrouted message if it is being routed around
an f-ring; otherwise it is a normal message.

Modifications to the routing logic. A normal mes-
sage is routed by the original dimension-order routing. A
normal message may be blocked by a fault while travel-
ing in any of the three dimensions: DIMg, DIM1, or DIMas.
In that case it becomes a misrouted message and routed
around an appropriate f-ring. We specify different ways
for different dimension messages to get around a fault. A
message blocked from taking its DIMp (respectively, DIM;)
hop travels on two sides of the corresponding f-ring formed
from a DIMo-DIM; (respectively, DIM;-DIM;) cross-section
of the fault. A message blocked from taking its DIM2 hop
travels on three sides of an f-ring formed from DIM2-DIMg
cross-section of the fault. Figure 4 illustrates the routing
of messages on f-rings. Messages blocked in DIMg and DIM;
may choose one of two possible orientations to get around
faults, but messages blocked in DIM2 can use only one par-
ticular orientation as indicated in Figure 4. If a misrouted
DIMg or DIM; message reaches a corner node of the f-ring,
then it takes the turn and continues to travel on it as a
normal message, since the original dimension-order routing
can be used. On the other hand, a misrouted DIM2 mes-
sage becomes normal and original dimension-order routing
is used to route it again only after it reaches the other side
of the fault block with only DIM2 hops left for it to reach
its destination.

In a fault-free network with dimension-order routing,
each physical channel is used by a specific type of message.
With faults, however, blocked messages are misrouted, and
some physical channels around f-rings are used by multi-
ple types of messages. This creates cyclic dependencies.

c0/c1
DIM1+

DIMO+ c2/c3

DIM2+
c0fcl

DIMO- DIM2-

c2/c3

DIM2+

DIMO+ DImM1-

DIM1+

Figure 4: Routing of six different message types around
a fault. The shaded area represents a faulty block, and
directed lines indicate the paths of messages on the f-ring
around the fault. The type of virtual channels used are
also indicated.

\O
N
c_()
\O
O

Y v
® O——0 ®
®

e
*,

lIIIIlIIIIliv

A
AN

TR
N\
TR
N\

AN

O O O O
\ O
- %
:» O
O O ot ¥

Figure 5: Example of the proposed fault-tolerant routing.
There is one fault block indicated by shaded nodes. The
links incident on the faulty nodes and wraparound links
are not shown for clarity. Routes for two messages, one
from a to b and another from ¢ to d, are shown by thick

dashed lines.

To break these new dependencies and to keep the routing
deadlock free, we use two new classes in addition to the
original two classes required for deadlock free routing in
a fault-free torus. These additional virtual channels re-
quire additional flit-buffers in each router chip. Let the
four classes of virtual channels be co,c1,c2,¢3. On each
physical channel (internode as well as intranode—between
router chips), a virtual channel of each class is simulated.
Depending on the direction and dimension a message is
traveling before being blocked by a fault, it can be one of
6 possible types: DIM;+ and DIM;_, 2 = 0,1,2. The chan-
nel allocation is such that any new dependencies among
the six types of messages caused by sharing of the phys-
ical channels on f-rings are broken. DIMy messages use
virtual channels of class ¢g before taking a hop on a DIMg
wraparound channel and ¢; virtual channels there after.
A DIMg message that has completed hops in DIMg but not
reached its destination will turn into a DIM; message and
continues routing as a DIM; message. Similarly, a DIM;
message uses ¢z or cs virtual channels, and turns into a
DIMy message after completing hops in DIM;. A DIM2 mes-
sage uses co or ¢1 while traveling in DIM2 and ¢2 or ¢z while
traveling in DIMg (because of misrouting). These rules for
fault-tolerant routing of messages are summarized in Ta-
ble 1.

A message that has completed hops in a dimension goes
to the next dimension router chip using a virtual channel
on the interchip link to that chip. The virtual channel class
used 1s the same as the virtual channel class used for the
hop it just completed. If it does not need to travel in the
next dimension, then it can use any virtual channel that
can be used by a message of that dimension on the inter-
chip link to the following dimension chip. For example, if a
DIMg message has completed its hops, then it goes to DIM;
chip using ¢ or ¢1 channel on the interchip link. If it does
not need to take any hops in DIM;, then it uses ¢z or c3 on
the link from DIM; chip to DIMz chip.

An example of the proposed fault-tolerant routing method

is shown in Figure 5. The proof of deadlock free routing is
given next.

5.1 Proof of deadlock-free routing

The above routing algorithm works for routers implemented
using a full crossbar, which can connect any input channel
of a node to any output channel. As mentioned earlier,
the previous works on fault-tolerant wormhole routing al-
gorithms implicitly assumed that the router in a node is
implemented using a crossbar, which provides full switch-
ing capability among multiple dimensions. In a multi-
chip dimension-order router, changing dimensions of travel
by messages is complicated, since interchip channels are
shared among different types of messages. We prove below
that these additional dependencies resulting from sharing
interchip links do not cause deadlocks.

Lemma 1 The proposed fault tolerant routing algorithm
18 deadlock-free.

Proof. There are six types of messages: DIM;y and DIM;_,
1t =0,1,2. A particular set of virtual channels are used for
each message type. So, messages of a type travel in a par-
ticular virtual network formed by all the nodes and the
set of virtual channels used by them. During the rout-
ing, a message of one type may change into another type

(for example, a DIMg; message may change into DIM;_
after completing its hops in DIMg). Our proof technique
relies on showing that there is a partial order among all
the virtual channels of the network and messages acquire
them in an increasing order of ranks [17]. For this we need
to show that (a) the sets of virtual channels used by the
various types of messages are pairwise disjoint, (b) the vir-
tual network for each type is acyclic, and (c) the virtual
networks are used by messages as per some partial order.
The multiplexers do not cause any new dependencies, since
they simply connect inputs to outputs in a demand time-
multiplexed manner.

The sets of virtual channels used by various types
of messages are pairwise disjoint. First, we show
that the set of virtual channels used by DIM;; messages
is disjoint from the set of virtual channels used by DIM;_
messages.

Consider DIMgy and DIMg— messages. If the sets of
virtual channels used by DIMgy and DIMg_ messages are
not disjoint, then they share virtual channels on intern-
ode physical channels or interchip physical channels. The
DIMg4 messages travel on positive direction DIMg physi-
cal channels and the DIM; physical channels among nodes
on the left boundary columns of f-rings. Similarly, DIMg_—
messages travel on negative direction DIMg physical chan-
nels and DIM; physical channels among nodes on the right
boundary columns of f-rings. This is illustrated in Figure 6
for an example f-ring. Since f-rings do not overlap, the col-
umn channels are used by exactly one or none of the two
classes of messages. So, DIMg4 and DIMg— do not share
virtual channels on internode physical channels, since the
physical channels they use are disjoint.

Because of multimodule implementation, DIMgy+ and
DIMg_ messages may share some virtual channels on in-
terchip links. With our fault-tolerant routing logic, this
cannot occur, however. Referring to Figure 6 again, we
note that only DIMg4+ messages can reserve the c¢o channel
from DIMg chip to DIM; chip in the middle nodes (node Ain
Figure 6) on the left column and the co channel from DIM;
chip to DIMg chip in the corner nodes on the left boundary
column of the f-ring. A DIMy_ message does not use them.
Similarly, the ¢o channels between DIMg and DIM; chips in
the nodes on the right boundary column of an f-ring are
used only by DIMy_ messages. For messages that took hops
on wraparound links in DIMg, the above argument repeats
with ¢; as the virtual channel. Hence, there cannot be
sharing of virtual channels among DIMg4+ messages.

From the above argument, it is clear that there are no
dependencies among DIMg4 and DIMg— classes of messages.
A normal message that completes its hops in DIMg becomes
a DIM; message and moves to the DIM; chip in the current
node. The use of a virtual channel into DIM; chip is similar
to the use of the injection channel form processor into DIMg
chip and does not cause any dependencies.

This argument can be repeated to show that DIM;14+ and
DIM;— messages use disjoint sets of physical channels.

The argument to show that DIM24 and DIM2_ messages
use disjoint sets of physical channels must take into con-
sideration that a DIM2 misrouted message travels on three
sides of the f-ring. However, the principal argument is un-
changed. As in the case of DIMy messages, the interchip
channel between DIMz and DIMg router chips in a node on
an f-ring can be used by only one of the DIM24+ and DIM2_—

Table 1: Planes and virtual channels used by various messages in a 3D torus with fault-tolerant PDRs.

[Message type | Plane type | Virtual channel classes

DIMg4, DIMg— | DIMg-DIM; | ¢o before reserving a wraparound link in DIMg, ¢; after reserving a
wraparound link in DIMg

DIM14, DIMi— | DIM;-DIM2 | ¢z before reserving a wraparound link in DIMi, cs after reserving a
wraparound link in DIM;

DIM24, DIMz— | DIM2-DIM; | ¢o (c1) while traveling in DIM> before (after) reserving a wraparound
link in DIM2, and ¢z (c3) while traveling in DIMg before (after) reserving
a wraparound link in DIM2

Dim0

Diml1

L‘FJ
C
—

>

Figure 6: Illustration of virtual channels used on interchip
links. Nodes A and B are the places where the misrouted
DIMg4 message uses interchip links. Similarly a misrouted
DIMg— message uses interchip links in nodes C and D. The
interchip channels used are given by labeled, directed thick
lines.

types of messages. The interchip channel usage by a DIM2 4
message on an f-ring is shown in Figure 7.

Now, consider messages of two different dimensions. By
our virtual channel allocation given in Table 1, they use
different classes of virtual channels on the physical chan-
nels they share. Only on disjoint physical channels they
may use virtual channels of the same class.

The virtual network for each message type is
acyclic. Consider DIMg4 messages. A normal DIMg4+ mes-
sage always progresses towards its destination. It uses co
channels before taking a hop on a DIMy wraparound link
and ¢ thereafter. Since the original dimension-order rout-
ing 1s deadlock free, there are no cycles among these virtual
channels. A misrouted DIMo4 message travels on the left
column of an f-ring reserving channels cg (or cl) as per
a linear order. Let ¢;(z,y) denote the virtual channel of
class ¢; on the physical channel that starts from node « and
ends in node y, one of its neighbors. If y is a DIM;4+ neigh-
bor of ¢ (yi = (#: + 1) mod k), then z — y is the DIM;4
physical channel between them. Similarly DIM;— channels
are defined.

The linear order of ¢ channels on an f-ring is given by
co(z,y) < co(y,z) where x,y, s are nodes on the left col-
umn of the f-ring, and both + — y and y — z are DIM14
or DIM;— physical channels. For example, for the f-ring in
Figure 6, co(AI,A) =< co(A, B) and co(B, A) < co(A,AI).
Now a partial order can be defined among the virtual chan-
nels used by DIMg4+ messages using the following rules:

Dim0

Figure 7: Illustration of virtual channels used on interchip
links. Nodes A, B, C and D are the places where the mis-
routed DIM24 message uses interchip links. The interchip
channels used are given by labeled, directed thick lines.

e co channels are ranked lower than c¢; channels.

o co(w,z) < co(x,y) and c1(w,z) < ci1(z,y) if both
w — x and © — y are DIMgy4 or DIMg—_.

o co(w,z) < co(z,y) and ¢1(w,) < c1(x, y) if (a) both
w — z and ¥ — y are DIM;4 or DIM;_ and (b) w,z,y
are nodes on the left column of an f-ring.

o o (respectively, c1) channels on the left column of an
f-ring in a DIM-DIM; plane are ranked higher than
the co (1) channels on the DIMp4 physical channels
that end in the left column nodes of the f-ring, and
are ranked lower than the ¢y (c1) channels on the
DIMg4 channels that start from the left column nodes.

Therefore, the virtual network of DIMy4+ messages is acyclic.
Similar rankings can be given to show that the virtual net-
works for other message types are acyclic.

The virtual networks are used according to a
partial order. This directly follows from the dimension-
order routing. A DIM;4, ¢ = 0,1,2 message never uses
the virtual network of a DIM;_ message and the virtual
networks of DIM;; or DIM;_ messages, 7 < ¢ It can be
easily verified that this defines a partial order. |

Table 2: Planes and virtual channels used by various mes-
sages for fault-tolerant routing in an nD torus.

Message type | Plane type | Virtual channel classes
Mo Ao 1 co and ¢
M, Aip co and c3
M2 A273 Co and C1
M,_1, n even Ap—1,0 co and c3
M,_1, n odd Ap—1,0 co and ¢ in DIMy,—1,
and c2 and c3 In DIMg

Lemma 2 The proposed fault tolerant routing algorithm
18 livelock-free and correctly routes all messages.

Proof. To see that messages are correctly delivered with-
out introducing livelocks in the faulty network, observe
that (a) a message is misrouted only around an f-ring, (b)
a message, once it leaves an f-ring will never revisit it,
(c) there are a finite number of f-rings in the mesh, (d)
a normal message progresses towards its destination with
each hop, and (e) the destination node is accessible, since
all non-faulty nodes are connected. Since a message is
misrouted only by a finite number of hops on each f-ring
and it never visits an f-ring twice, the extent of misrouting
is limited. This together with the fact that each normal
hop takes a message closer to the destination proves that
messages are correctly delivered and that livelocks do not
occur.

5.2 Extensions

Extension to multidimensional tori. The algorithm
for routing in the presence of nonoverlapping f-rings can
be extended to n-dimensional (nD) tori using the planar-
adaptive routing (PAR) technique [11].

The block-fault model for nD tori assumes that fault-
regions are in multiple, disjoint nD boxes. The routing
algorithm to handle nonoverlapping f-rings still needs only
four virtual channels per physical channel. The key issue
is how virtual channels and planes are used to route mes-
sages. Let A;;, where 0 < 1 < j < n, denote the set
of all 2D planes formed using dimensions ¢ and j. Fur-
ther, A;; = Aj:. We use only planes in sets A;;, where
0<i<nand j=i+1 (mod n).

A normal message that needs to travel in DiM;, 0 <
1 < n, as per the e-cube is an M; message and is routed
in a plane of the type A;;,7 =141 (mod n). A M; mes-
sage that completed its hops in dimension DIM; becomes a
DIM; message, where j > ¢ is the next dimension of travel
as per the e-cube algorithm. A blocked message uses the
f-ring in its current 2D plane to get around faults. Ta-
ble 2 indicates the types of planes and virtual channels
used in routing various types of messages by the routing
algorithm. A message that still needs hops in dimension 0
uses virtual channel cg (before reserving a wraparound link
in dimension 0)7 and virtual channel ¢ (after reserving a
wraparound link in dimension 0). For n = 3, this usage is
the same as described in the previous section for 3D tori.
Using this virtual channel assignment, one can show that
dependencies do not arise on internode and interchip links,
using arguments similar to those given in LLemma 1.

Extension to meshes. The above techniques for fault-
tolerant routing can be applied to mesh networks as well.
For mesh networks, due to the absence of wraparound
links, the required number of virtual channels is smaller
than that for tori. For example, two virtual channels per
physical channel are sufficient to handle nonoverlapping f-
rings in meshes. However, in meshes, faults on the bound-
aries of the network (for example, topmost row in a 2D
mesh) require special handling. The treatment of meshes
is similar to that given in [3, 4]. The proof of deadlock free
routing is similar to that given above for torus routers.

6 Simulation Based Performance Study

We have used a flit-level simulator to study the perfor-
mance of the fault-tolerant PDRs proposed in this paper.
We have simulated 16 x 16 mesh and torus networks for
the uniform traffic pattern with geometrically distributed
message interarrival times. In practice, fixed length mes-
sages give better manageability of resources such as in-
jection and consumption buffers, and small message sizes
are more suitable for fine-grain computations. Hence, we
have used fixed length messages of 20 flits, which could be
suitable for transmitting four 64-bit words together with
header, checksum and other information on 16-bit wide
physical channels.

For torus simulations, we have simulated four virtual
channels on each internode and interchip physical channel,
and for mesh simulations, two virtual channels per physi-
cal channel. On physical channels that are neither faulty
nor part of f-rings, all the simulated virtual channels are
used to route normal messages. Since on each such physical
channel only one dimension messages travel, extra channels
are available to reduce channel congestion. Recent studies
[5, 14] have shown that using more virtual channels than
those necessary for deadlock free routing improves the per-
formance of the e-cube considerably. On physical channels
that are part of f-rings, each virtual channel is used for a
specific type of message. The virtual channels on a phys-
ical channel (internode as well as interchip) are demand
time-multiplexed, and it takes one cycle to transfer a flit
on a physical channel.

We have assumed that messages experience processing
delays when passing through intermediate nodes. We used
a delay of 3 cycles to process header flits, and a delay of
2 cycles to route data flits from an incoming channel to
an outgoing channel of an intermediate node. This is in
addition to any other delays that a flit may see because of
either round robin processing of one incoming header at a
time by the router or virtual channel bandwidth allocation.

Each virtual channel has a buffer of depth four (holds
four flits) to pipeline message transmission smoothly. Be-
cause of asynchronous pipelining of message transmission
among nodes, bubbles are created with shallow buffers of
depth 1 or 2. So, mesh routers have 32 flits of storage and
torus routers 64 flits of storage.

To facilitate simulations at and beyond the normal sat-
uration points for each routing algorithm, we have limited
the injection by each node. This injection limit is inde-
pendent of the message interarrival time. After some ex-
perimentation, we have set the injection limit to 2, which
means that a node may inject a new message if fewer than
two of its previously injected messages are still in the node.
When there are faults in the network, the injection limit

300

Op —
1p &—
250 r 5p -— 1
g 200 1
o
>
2
> 150 - 1
c
]
< 100 1
50 1
0 L L L L
0 0.2 0.4 0.6 0.8 1

Bisection Utilization

Figure 8: Performance of the fault-tolerant PDR for
a 2D torus network with four virtual channels per

physical channel. The label dp indicates results for
d% faults.

has little effect on the latency and throughput values prior
to the saturation.

We use bisection utilization and average message la-
tency as the performance metrics. The bisection utilization
(pu) is defined as follows.

p» = Number of bisection messages delivered/cycle x
Message length
Bisection bandwidth

The bisection bandwidth is defined as the maximum num-
ber of flits that can be transferred across the bisection in a
cycle, and is proportional to the number of nonfaulty links
in the bisection of the network—for example, the row links
connecting nodes in the middle two columns of a 16 x 16
mesh. A message is a bisection message if its source and
destination are on the opposite sides of the bisection of the
fault-free network. The average message latency is the av-
erage duration from a message’s injection to its consump-
tion.

We have simulated the mesh and torus networks with
no faults and with approximately 1% and 5% of the total
network links faulty. We have used a mixture of node and
link faults. Node faults cause more severe congestion, since
a node fault blocks both row and column messages while
a link fault blocks only one type of messages. We have set
one node and one link faulty for the 1%-faults case, and 4
nodes and 10 links faulty for the 5%-faults case. In each
case, we have randomly generated the required number
of faulty nodes and links such that isolated faults with
nonoverlapping f-rings are formed.

Performance under faults. Figures 8 and 9 give the
simulation results for torus and mesh networks, respec-
tively. For each value reported in these graphs, the 95%
confidence interval is within 10% of the value.

In each case, the performance for fault-free routing is
much higher than the performance with faults. The peak
utilization for torus PDR without faults is 52%, but drops
to 32% with 1% faults and to 22% with 5% faults. Simi-
larly, the peak utilization for mesh PDR without faults is
58%, but drops to 30% with 1% faults and to 27% with

300 .
Op »—
1p &—
250 r 5p =— 1
g 200 1
o
>
2
> 150 1
c
]
S 100 | 1
50 1
0 L L L L
0 0.2 0.4 0.6 0.8 1

Bisection Utilization

Figure 9: Performance of the fault-tolerant PDR for a
2D mesh network with two virtual channels per phys-
ical channel. The label dp indicates results for d%
faults.

5% faults. These results are consistent with the perfor-
mance degradations seen for crossbar based fault-tolerant
dimension-order routers [4].

The high performance for fault-free networks is due to
use of the extra channels to avoid congestion. Even with a
single fault, the number of types of messages traveling on
f-ring links is increased and severe congestion occurs. Thus
an f-ring becomes a hotspot causing performance degrada-
tion. Therefore, for graceful degradation of performance,
some form of adaptivity should be considered. We be-
lieve that it should be feasible to provide limited adaptiv-
ity while retaining the multimodule implementation of the
router.

The performances of torus and mesh networks are not
directly comparable for several reasons. Mesh routers are
simulated with 32 flits of storage, while torus routers are
simulated with twice as much storage. Bisection utiliza-
tion is a ratio of achieved throughput to bisection band-
width, which is influenced by the topology. In terms of raw
throughput, the fault-free torus delivered messages at the
rate of 66 flits or 3.3 messages/cycle, while the fault-free
mesh delivered at the rate of 36 flits/cycle.

Impact on fault-free performance. Our approach for
deadlock-free routing uses a few extra virtual channels to
break cyclic dependencies among channels. If a fault-free
network already uses virtual channels, then the impact of
using a few more virtual channels to provide fault-tolerant
routing is not too severe. Otherwise, adding virtual chan-
nels for fault-tolerance may affect the fault-free perfor-
mance. For example, dimension-order routing on a fault-
free mesh is deadlock free without using any virtual chan-
nels. Since we need two virtual channels per physical chan-
nel to provide fault-tolerant routing, the cost and speed of
PDRs are affected. The cost is increased because of the
additional switching and virtual channel controllers at the
outgoing channels. The speed may be reduced because of
the increased complexity of selecting an outgoing channel
and additional delays through virtual channel controllers.

In this paper, we address the impact of the reduced
speed on message delays and network throughput. For the
sake of simplicity, assume that the node delays for flits is 1

cycle in the PDR without virtual channels. The reduction
of router speed can be handled in one of the following two
ways.

o Unpipelined routers: Transit time for each flit through
an intermediate node is still one cycle. But the router
operates with a slower clock.

e Pipelined routers: Clock rate of the router is kept the
same. However, the transit time for a flit through a
node equals multiple clock cycles.

Chien [10] analyzed several wormhole router organizations
and concluded that adding virtual channels could increase
the clock cycle time of a router substantially. This analysis
is based on the assumption that routers are unpipelined.
An unpipelined router has to examine the header of a mes-
sage on an incoming channel, select an appropriate outgo-
ing channel, and place the header on the selected outgoing
channel (in the absence of contention) in one clock cycle.
So, introducing virtual channels increases the delays seen
by messages in their intermediate nodes.

An alternative is to pipeline the message path within
a router. By pipelining the message path, the clock rate
need not be reduced when virtual channels are introduced.
A message still sees larger node delays in the form of multi-
ple clock cycles. For example, a message header may see a
three stage processing: buffering at input channel, select-
ing and switching to an appropriate outgoing channel, and
virtual channel controller at the output channel. Once a
path is established for a message, its subsequent data flits
cut-through each intermediate node in two stages: buffer-
ing at input channel and virtual channel controller at the
output channel.

We have conducted simulations to compare message de-
lays and throughputs for both types of routers. Figure 10
gives the results. For the pipelined router, at each inter-
mediate node visited, header flits see 3-cycle delays and
data flits 2-cycle delays. For the unpipelined router, the
node delays are constant—1 cycle.

If the unpipelined router has the same clock rate as
the pipelined router, then the former has about 30 cycles
lower latency and 5% higher bisection utilization. If clock
cycle time of the unpipelined router is about 30% more
than the pipelined router, then both give rise to the same
message delays. However, the pipelined router gives over
20% higher throughput in terms of bytes/second.

In our earlier simulations for a 16 x 16 mesh with cross-
bar based routers, one virtual channel (same as no virtual
channels) per physical channel, and channel buffer depths
of 8, we obtained about 60% bisection utilization [3]. From
the results in Figure 10, a pipelined PDR with two virtual
channels and channel buffer depth of 4 achieves similar
throughputs. The main difference is message delays are
higher in the pipelined router. In both cases, the router
clock cycle time and amount of buffer space per physical
channel are the same.

This shows that adding virtual channels to a network
that does not already have virtual channels may not re-
duce the throughput. Pipelining the message path within
a router is the key. Thus, adding additional virtual chan-
nels to provide fault-tolerant communication does not nec-
essarily reduce the performance for the fault-free case.

If a network already uses virtual channels for the fault-
free case, then adding a few more virtual channels causes
only small increases to the cost and clock cycle time. In

300 ; .

p}pelined —
unpipelined &—
250 1
g 200 | 1
o
ES
&
> 150 | 1
c
2
S 100 1
50 1
0 L L L L
0 0.2 0.4 0.6 0.8 1

Bisection Utilization

Figure 10: Performances of unpipelined and pipelined
PDRs in a (16,2)-mesh with two virtual channels per phys-
ical channel. The unpipelined router is simulated with 1-
cycle delay for flits going through an intermediate node.
The pipelined router is simulated with 3-cycles delay for
header flits and 2-cycles delay for data flits.

such cases, the throughput increased by adding a few extra
virtual channels (as in the torus case) usually outweighs
any small increases in message delays.

7 Concluding Remarks

We have presented a technique to enhance the dimension-
order routers in multicomputer networks to tolerate block
faults. Particular attention has been paid to the appli-
cability of proposed techniques for current multicomput-
ers which use partitioned dimension-order routers (PDRs).
Since PDRs do not have centralized crossbars, the previ-
ously proposed techniques for fault-tolerant routing cannot
be implemented without redesigning the existing routers.
With the proposed technique, however, multiple faults can
be tolerated while retaining the PDR implementation. The
proposed technique guarantees deadlock free routing with
only a modest increase in the number of virtual channels
used. The changes to the router increase the pins on each
router chip by a small constant.

There are two possible disadvantages. The chip count is
increased with the use of multiplexers. These multiplexers
themselves may be prone to faults. Also, transit delays for
messages cutting-through intermediate nodes are higher.
Neither is a severe disadvantage, however. Multiplexers
are simple and inexpensive, so their cost and reliability
do not affect the overall cost and reliability of the router.
With extensive pipelining for the router chip, increased
transit delays do not affect the network throughput.

In this paper, we have shown how to handle faults that
give rise to nonoverlapping f-rings. Overlapping f-rings
can be handled using more virtual channels than in the
case of nonoverlapping f-rings. To make the length of all
links in a given dimension of the torus the same, often
alternate nodes in a given dimension are placed physically
close on the same circuit board [12]. In this case, the
faults on a board lead to overlapping f-rings, which can
be handled using more virtual channels than in the case of
nonoverlapping f-rings [8].

We have presented simulation results on the perfor-
mance of the fault-tolerant routing in mesh and torus net-
works with PDRs. As in the case of meshes with crossbar
based routers [4], the first fault causes substantial perfor-
mance degradation. Additional faults cause only a little
performance degradation. This is due to the hotspot effect
created by faults on the nodes and channels on f-rings and
the nonadaptive nature of dimension-order routing, which
does not allow messages to take alternate paths when the
dimension-order path is congested.

Using adaptivity provides graceful degradation of per-
formance. But at the present, there are no known adaptive
routing methods that are suitable for multichip implemen-
tations. Future multiprocessors are more likely to use mul-
tichip routers than single-chip routers, since for the same
technology, multichip implementations provide wider in-
ternode channels. Therefore, further research on combin-
ing adaptivity and fault-tolerance for multimodule routers
is needed.

Acknowledgments

We would like to thank Professors James E. Smith and
P. Ramanathan for many insightful comments on this work.

References

[1] K. Bolding and L. Snyder, “Overview of fault handling
for the chaos router,” in Proceedings of the 1991 IEFE
International Workshop on Defect and Fault Toler-
ance m VLSI Systems, pp. 124-127, 1991.

K. Bolding and W. Yost, “Design of a router for fault-
tolerant networks,” in Proc. of Parallel Routing and
Communication Workshop, pp. 226-240, May 1994.
R. V. Boppana and S. Chalasani, “Fault-tolerant rout-
ing with non-adaptive wormhole algorithms in mesh
networks,” in Proc. Supercomputing '94, Nov. 1994.
R. V. Boppana and S. Chalasani, “Fault-tolerant
wormhole routing algorithms for mesh networks,”
IFEFE Trans. on Computers, vol. 44, pp. 848-864, July
1995.

S. Borkar et al., “iWarp: An integrated solution to
high-speed parallel computing,” in Proc. Supercom-
puting 88, pp. 330-339, 1988.

Y. M. Boura and C. R. Das, “Fault-tolerant routing in
mesh networks,” in Proc. 1995 Int. Conf. on Parallel
Processing, pp. 1.106-109, Aug. 1995.

S. Chalasani and R. V. Boppana, “Adaptive wormhole
routing in tori with faults,” IFE Proceedings: Com-
puters and Digital Techniques. To appear. Prelimi-
nary results presented at International Conference on
Supercomputing ’94.

S. Chalasani and R. V. Boppana, “Fault-tolerant
communication with partitioned dimension-order
routers.” February 1995.

S. Chalasani and R. V. Boppana, “Adaptive fault-
tolerant wormhole routing algorithms with low virtual
channel requirements,” in Proc. Int’l Symp. on Paral-
lel Architectures, Algorithms and Networks, pp. 214—
221, Dec. 1994.

A. A. Chien, “A cost and speed model for k-ary n-
cube wormhole routers.” Presented at Hot Intercon-
nects 1993, Mar. 1993.

[10]

10

[11] A. A. Chien and J. H. Kim, “Planar-adaptive rout-
ing: Low-cost adaptive networks for multiprocessors,”
in Proc. 19th Ann. Int. Symp. on Comput. Arch.,
pp. 268277, 1992.

Cray Research Inc., Cray T3D System Architecture
Overview, Sept. 1993.

W. J. Dally, “Network and processor architecture
for message-driven computers,” in VLSI and Paral-
lel Computation (R. Suaya and G. Birtwislte, eds.),
ch. 3, pp. 140-222, San Mateo, California: Morgan-
Kaufman Publishers, Inc., 1990.

W. J. Dally, “Virtual-channel flow control,” IFEF
Trans. on Parallel and Distributed Systems, vol. 3,
pp. 194-205, Mar. 1992.

W. J. Dally and H. Aoki, “Deadlock-free adaptive
routing in multicomputer networks using virtual chan-
nels,” IEFE Trans. on Parallel and Distributed Sys-
tems, vol. 4, pp. 466-475, April 1993.

W. J. Dally, L. R. Dennison, D. Harris, K. Kan, and
T. Xanthopoulos, “The reliable router: A reliable and
high-performance communication substrate for paral-
lel computers,” in Proc. of Parallel Routing and Com-
munication Workshop, pp. 241-255, May 1994.

W. J. Dally and C. L. Seitz, “Deadlock-free message
routing in multiprocessor interconnection networks,”
IFEFE Trans. on Computers, vol. C-36, no. 5, pp. 547—
553, 1987.

W. J. Dally and P. Song, “Design of a self-timed
VLSI multicomputer communication controller,” in
Int’l Conf. on Computer Design, pp. 230-234, 1987.
J. Duato, “A new theory of deadlock-free adaptive
routing in wormhole networks,” IEFFE Trans. on Par-
allel and Distributed Systems, vol. 4, pp. 1320-1331,
Dec. 1993.

P. T. Gaughan and S. Yalamanchili, “A family of
fault-tolerant routing protocols for direct multipro-
cessor networks,” IFEE Trans. on Parallel and Dis-
tributed Systems, vol. 6, pp. 482-497, May 1995.

C. J. Glass and L. M. Ni, “Fault-tolerant worm-
hole routing in meshes,” in Twenty-Third Annual
Int. Symp. on Fault- Tolerant Computing, pp. 240-249,

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

1993.

[22] Intel Corporation, Paragon XP/S Product Overview,
1991.

[23] T. Lee and J. Hayes, “A fault-tolerant communication

scheme for hypercube computers,” IEFE Trans. on
Computers, vol. 41, pp. 1242-1256, Oct. 1992.

J. Y. Ngai and C. L. Seitz, “A framework for adap-
tive routing in multicomputer networks,” in Proc.
First Symp. on Parallel Algorithms and Architectures,
pp. 1-9, 1989.

C. S. Raghavendra, P.-J. Yang, and S.-B. Tien, “Free
dimensions — an effective approach to achieving fault
tolerance in hypercubes,” in Twenty-Second Annual
Int. Symp. on Fault- Tolerant Computing, pp. 170-177,
1992.

C. L. Seitz, “Concurrent architectures,” in VLST and
Parallel Computation (R. Suaya and G. Birtwistle,
eds.), ch. 1, pp. 1-84, San Mateo, California: Morgan-
Kaufman Publishers, Inc., 1990.

[24]

[25]

[26]

