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Abstract. We describe fault-tolerant routing of multi-
cast messages i mesh-based wormhole-switched multicom-
puters. With the proposed techniques, multiple conver faults
can be tolerated. The fault information is kept locally—
each fault-free processor needs to know the status of the
links incident on it only. Furthermore, the proposed tech-
niques are deadlock- and livelock-free and guarantee deliv-
ery of messages. In particular, we show that the previously
proposed column-path and Hamilton-path based algorithms
can be made tolerant to multiple faults using two or three
virtual channels per physical channel.

Keywords: block faults, fault-tolerant routing, Hamil-
ton path routing, multicast routing, wormhole routing.

1 Introduction

Many commercially available parallel computers use mesh
or grid based networks for interprocessor communication
with a processor and router module at each node [5, 10].
The interprocessor communication functions in a multi-
computer are usually handled by a router which receives
data from incoming channels and transmits data to outgo-
ing channels using a suitable channel assignment protocol.
The channel assignment is specified as a routing algorithm
and 1s implemented in distributed manner such that each
router routes messages from its input channels to its out-
put channels based on its local information only.

Wormhole switching [7], a form of pipelined communi-
cation, 1s the most commonly used switching technique in
multicomputers; store-and-forward and virtual cut-through
are alternatives to wormhole switching.

Several methods are available for unicast routing, where
each message is between a pair of nodes. An excellent sur-
vey of wormhole routing methods can be found in [12].
The issue of routing becomes complicated when there are
faults in the parallel computer or when multicast com-
munication should be supported. In multicast communi-
cation, a node sends a message to multiple destinations.
Multicast communication i1s complicated, since a multi-
cast message, in general, requires more resources than a
unicast message.

In this paper, we study the problem of fault-tolerant
multicast communication for wormhole switched multi-
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computers. This is an important problem, since multi-
cast communication 1s a natural communication primitive
to handle synchronizations, invalidations and updates of
cache lines in distributed shared memory computers, and
since parallel computers must be used efficiently even in
the presence of faults.

There are some recent results on fault-tolerant worm-
hole routing [6, 4, 9, 8, 1, 2] and multicast wormhole rout-
ing [13, 11, 3], but very few results exist on fault-tolerant
multicast routing (for a result on hypercubes with limited
number of faults see [14]).

In this paper, we show how to provide fault-tolerant
communication using two recently proposed multicast rout-
ing algorithms for mesh based multicomputers. We con-
sider the convex or block fault model used in literature
[4, 1] with no global knowledge of fault information. If
the network is connected, our techniques provide deadlock-
and livelock-free delivery of messages to all of their desti-
nations.

Section 2 describes the key multicast algorithms used
in this paper and the fault model. Section 3 describes
fault-tolerant routing with the column path algorithm.
Section 4 describes fault-tolerant routing with Hamilton
path based routing algorithm. Section 5 concludes the

paper.

2 Fault model and routing algorithms

We consider k-radix, 2-dimensional meshes. But all the
results and discussions can be applied to multidimensional
tori and meshes with suitable modifications.

The two dimensions of the mesh are denoted as DIM;
and DIMg. The rows of a 2D mesh are numbered from top
to bottom 0,1,...,k — 1, and the columns are numbered
from left to right 0, 1, ..., k — 1. Node z, 0 < & < k?,
in a 2D mesh may be represented by a two-tuple (z1, zo),
where z1 1s the node’s row number and z¢ the node’s col-
umn number in the 2D grid. The hops taken by a message
in a row correspond to hops through processors in DIMg
and hops in a column correspond to hops in DIM;. In ad-
dition, a hop may be a ‘4’ or a ‘=’ hop depending on the
indices of the current node and the next node in the di-
mension of travel. For example, DIM14 hops correspond to
column hops from top to bottom. A communication chan-
nel from node z to y is denoted by < &,y >. Each node is a
combination of processor, local memory, and router. The
router handles all the communication and is connected
to its processor through injection and consumption (de-
livery) channels, and connected to other nodes (routers)



700 ; i 700 ; i o0 "
i I
btod
)

—o—0— g

oo oo
Figure 1: Example of (a) an undirected Hamilton path and
the corresponding (b) H, and (c) H; directed networks of
a mesh. The solid lines indicates the Hamilton path and
dashed lines indicate the links that could be used to reduce
path lengths in message routing.

through communication links. Each communication link
is a full-duplex channel implemented using two unidirec-
tional physical channels.

2.1 Multicast routing algorithms

First we describe a few recent multicast algorithms: the
Hamilton path based algorithms [11] and the e-cube based
column path algorithm [3].

2.1.1 Multicast routing based on Hamilton paths

First an undirected Hamilton path, which goes through
each node exactly once, is constructed. An example of
an undirected Hamilton path, with node (0,0) as an end
node, is given in Figure 1. From this two directed Hamil-
ton paths can be constructed: one starts at (0,0), the H,
network, and another ends at (0, 0), the H; network. The
links that are not part of the Hamilton path may be used
with appropriate direction to reduce path length.

Dual-path algorithm. Due to the construction of the
Hamilton paths H, and H;, the paths from any node to
any other node are acyclic. In particular, some nodes are
reached from a given node via H, network only and the
rest via H; network only.

In the dual-path algorithm, multicast messages from
a node are transmitted on appropriate parts of the H,
and H; networks. Figure 2.1.1(a) illustrates the portions
of H, and H; networks used by node (3,2) to send its
multicast messages. Hence, the destinations of a multicast
message are placed into two groups. One group has all
the destinations that can be reached from the source node
using the H, network, and the other has the remaining
destinations, which can be reached using the H; network.

Thus each source of a multicast message, depending on
its location and the locations of the destinations, transmits
either one or two copies of the message. For example, if
(3,2) needs to send a message to destinations (0,5) and
(5,0), it will send two copies in opposite directions—one to
(0,5) and another to (5,0). However, a multicast message
from (3,2) to destinations (5,5) and (5,0) will be sent as
a single message. For shorter paths, vertical channels that
are not part of the Hamilton path may be used appropri-
ately. The routing of a multicast message from (3,2) to
(0,5), (1,4), (5,0), and (5,5) is indicated in Figure 2.1.1(a).

Multipath algorithm. The dual-path algorithm uses
at most two copies of the message for multicast commu-
nication. This may increase the latency for some mul-
ticast messages. The multipath algorithm attempts to
reduce long latencies by using up to four copies (2n for

n-dimensional meshes) of the original multicast message.
As per the multipath routing algorithm, all the destina-
tions of the multicast message are grouped into four dis-
joint subsets. Each subset of destinations are serviced by
one copy of the multicast message [11]. Figure 2.1.1(b)
indicates the routing of a multicast message from (3,2) to
(0,5), (1,4), (5,0), and (5,5) using three copies.

The dual-path and multipath schemes provide deadlock-
free routing of multicast messages. Further, they also pro-
vide minimal routing of unicast messages, since vertical
links are used for shortcuts. Therefore, either scheme can
be used to route unicast and multicast messages simulta-
neously in a common framework.

2.1.2 Column-path routing algorithm

The dual-path and multipath schemes are not compatible
with the well-known e-cube routing algorithm. Since the
e-cube is the most commonly used routing method, it is
of interest to develop multicast techniques that can take
advantage of implementation techniques and methods de-
veloped for e-cube. One such example is the column-path
algorithm given in [3]. The e-cube routing is specified
for unicast messages as follows: each message is routed in
DIMo until it exhausts all its row hops, at which point it is
in the same column as its destination; the message is then
routed in DIM; until the destination is reached.

The column-path algorithm partitions the set of desti-
nations of a multicast message into at most 2k subsets such
that there are at most 2 messages directed to each column.
Only one message 1s sent to a column if all destinations
in that column are either below or above the source node;
otherwise, two messages are sent to that column. In the
example of Figure 2.1.1(c), the destinations for the mul-
ticast message with source (2,2) are (1,4), (3,3), (3,4),
(4,4), (1,5) and (0, 5). In all four copies of the message are
sent; one copy to (3,3), one to (1, 4), another to (3,4) and
(4,4), and yet another to (1,5) and (0,5). Each of these
messages is routed using the e-cube (or, row-column) rout-
ing algorithm. Hence, the column-path routing is compat-
ible with the unicast routing method used in the current
parallel computers. A similar but more general method
has been independently developed by Panda et al. [13].

2.2 The fault model
We consider both node and link faults. All the links in-

cident on a faulty node are considered faulty. We assume
that failed components simply cease to work and that mes-
sages are generated among nonfaulty processors only.

We model multiple simultaneous faults, which could be
connected or disjoint. We assume that the mean time to
repair faults is quite large, a few hours to many days, and
that the existing fault-free processors are still connected
and thus should be used for computations in the mean
time. We assume that each non-faulty processor knows
only the status of its neighbors.

A set F of faulty nodes and links indicates a (rect-
angular) fault block, or f-region, if there is a rectangle
connecting various nodes of the mesh such that (a) the
boundary of the rectangle has only fault-free nodes and
links and (b) the interior of the rectangle contains all and
only the components given by F'. A fault set that includes
a component from one of the four boundaries—top and
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Figure 2: Examples of routing using (a) dual-path (b) multipath (c) column-path algorithms.
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Figure 3: Block faults in a 2-D mesh. Faulty nodes are
shown as filled circles, and faulty links are not shown.

bottom rows, left most and right most columns—of a 2D
mesh denotes a rectangular fault block, if the above defini-
tion is satisfied when the mesh is extended with nonfaulty
virtual rows and columns on all four sides. However, fault
blocks abutting on network boundary are not convex [4].
Therefore, we do not consider faults on network edges.
Figure 3 indicates two fault blocks: Fy = {(1,2),(2,2)}
and F> = {< (4,2),(5,2) >, < (4,3),(5,3) >}.

We use the block-fault model, in which each fault be-
longs to exactly one fault block. Under the block-fault
model, the complete set of faults in a 2D mesh is the union
of multiple fault blocks (e.g., F1 U F3 in Figure 3). If faults
disconnect the network, our results can still be applied to
each subnetwork.

For each fault region, there is a ring of fault-free nodes
and links such that it encloses the fault-free region. Such
aring with minimal number of links is called the fault-ring
(f-ring) for that fault region. The f-ring of a block fault
is rectangular. The f-rings associated with the two fault
blocks in Figure 3 are indicated by thick lines. The four
sides of an f-ring are classified into left and right columns
and and top and bottom rows. If two f-rings have common

physical channels, then they are said to overlap.

When a fault occurs, the corresponding f-ring can be
formed in a distributed manner using a two-step process.
In the first step, each processor that detected a faulty link
sends this message to its neighbors in other dimensions.
Using the set of messages received, each node determines
its position and neighbors on the f-ring. There are eight
possible positions for a processor to be in an f-ring: four
corner positions, two row positions and two column posi-
tions. For more details on forming f-rings, see [2].

An f-ring represents a two-lane path to a message that
needs to go through the f-region contained by the f-ring.
Routing messages on fault-rings creates new dependencies
among resources acquired by messages and, hence, addi-
tional possibilities for deadlocks.

3 Fault-tolerant column-path routing

Because of its simple routing logic, the column-path al-
gorithm can be easily enhanced to handle faults. When
there are no faults, the original column-path algorithm is
used. Even when there are faults in the network, each mes-
sage is routed using the original column-path algorithm as
much as possible. When a message arrives at a node, the
next hop for that message is specified by the column-path
algorithm. If that hop is on a faulty link, then the mes-
sage is blocked by the fault. The routing logic is enhanced
to handle such situations so that the message is routed
around faults. Once the message is routed around faults,
the column-path algorithm is used to route the message
until it reaches all of its destinations or is blocked again.
It is noteworthy that the modifications to routing are used
only when a message is blocked by a fault. First, we con-
sider nonoverlapping f-rings.

Modifications to the routing logic. The path of a
message in column-path algorithm consists of two parts:
the first part is on row (DIMO) channels and the second
part is on column (DIM;) channels. Therefore, a message
may be blocked by a fault while traveling in a row or in
a column. A message blocked from taking its DIMg hop
travels on two sides of the f-ring; a message blocked from
taking its DIM; hop travels on three sides of the f-ring.

If a message is blocked from taking a DIMg4+ hop, then it
touches the corresponding f-ring on the left column of the



f-ring. This message travels on the the f-ring in clockwise
orientation (up and right) if its first destination is in a
row below its current row; otherwise it travels the f-ring in
counter clockwise orientation (down and right). Similarly,
if a message is blocked from taking its DIMg— hop, then
it travels on the f-ring in clockwise orientation if its first
destination is in a row above the current row or counter
clockwise orientation otherwise (see Figure 4). A DIMg
message that is in the same column as its first destination
becomes a DIM; message.

If a message is blocked from taking a DIM14 hop, then
it is blocked at a node in the top row of the f-ring. This
message travels on three sides of the f-ring in clockwise
orientation such that it reaches the same column at the
bottom row of the f-ring. Finally, if a message is blocked
from taking a DIM;— hop, then it travels on the counter
clockwise orientation on the f-ring starting from the bot-
tom row of the f-ring to the top row of the f-ring such that
it 18 in the same column as it was before being blocked by
the fault. See Figure 4 for an illustration.

Because of this misrouting of messages when blocked
by faults, some physical channels around f-rings are used
by multiple messages. This creates cyclic dependencies.
To break these new dependencies, we use a general tech-
nique given in [7] and simulate multiple virtual channels on
each physical channel. The bandwidth of a physical chan-
nel is demand time-multiplexed among the virtual chan-
nels. When faults are such that only nonoverlapping f-
rings occur, just two virtual channels per physical channel
are sufficient to provide deadlock free routing even when
there are multiple faults in the network.

We use two classes of virtual channels: ¢y and ¢;. On
each physical channel, a virtual channel of each class is
simulated. The channel allocation is such that any new
dependencies among the four classes of messages caused
by sharing of the physical channels on f-rings are broken.
For DIMy messages, virtual channels of class ¢o are used
and for DIM; messages ¢1 virtual channels are used.

c0 c0
DIMO+ DIMO-
c0 c0
(a) (b)

DIM1+ el

o DIM1-
(c) )

Figure 4: Routing of four different message types around
a fault. The shaded area represents a faulty block, and
directed lines indicate the paths of messages on the f-ring.

The complete routing logic and channel allocation are
given in Figure 5. An example of fault-tolerant routing
with the proposed method is shown in Figure 6.

Table 1: Orientations and virtual channels used by the
Fault-Tolerant-Column-Path-Routing algorithm.

Message Position of F-Ring
Type Next Orientation
Destination (Virtual Channel)
DIMo 4 In a row above | Counter Clockwise
its row of travel (co)
DIMo 4 In a row below Clockwise
its row of travel (co)
DIMg— In a row above Clockwise
its row of travel (co)
DIMg— In a row below | Counter Clockwise
its row of travel (co)
DIM1 4 (don’t care) Clockwise (c1)
DIM; — (don’t care) Counter Clockwise
(c1)
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Figure 6: Example of fault-tolerant routing with the
column-path algorithm. There is one faulty (shaded) node
and one faulty link. The path of the multicast message
from (2,0) to (3,4) and (3,5) is shown by directed lines.

Proof of deadlock free routing. In multicast worm-
hole routing, deadlocks can arise from dependencies on
communication channels between nodes and consumption
channels between a router and its processor in a node [3].
First let us consider deadlocks on communication chan-
nels. The proof technique is similar to the one we have
given in [1] for fault-tolerant e-cube routing, since the
column-path algorithm is similar to the e-cube routing.
Therefore, a sketch of the proof is given below.

For the deadlock to occur, there has to be a cyclic de-
pendency on the virtual channels acquired by the messages
involved in the deadlock. For the purpose of the following
discussion, we define row messages as messages that need
to take DIMg hops when normal and column messages are
messages that have completed all their row hops and need
to take DIM; hops only when normal.

Row messages may turn into column messages after a
few hops, but column messages never turn into row mes-
sages. Since row messages use only c¢g virtual channels
and column messages use only ¢; virtual channels, there
cannot be a deadlock cycle involving both row and column



blocked, route M accordingly.

(a) set the status of M to misrouted, and

block that caused the misrouting.

Procedure Fault-Tolerant-Column-Path-Routing(Message M)
/* M has a status field to indicate if it is currently misrouted or normal. Initially M’s status is normal. */
1. As long as M is not currently misrouted and the hop specified by the original column-path algorithm is not

2. If M is currently not misrouted but the hop specified by the column-path is blocked by a fault, then

(b) route it using the orientation and virtual channels specified in Table 1.
The misrouting of M is completed and M’s status is set to normal if one of the following occurs:

(a) M is a DIMo message and reached a corner node of the f-ring it is traversing.

(b) M is a DIM; message and it is in the same column as its destination and is on the other side of the faulty

Figure 5: Modifications to the column-path routing to handle faults.

messages. Conceptually, the network may be considered
as a union of two planes, plane 0 with virtual channels of
co, and plane 1 with virtual channels of ¢1. A message
may move from plane 0 to plane 1 but never in the oppo-
site direction. Therefore, if there is a deadlock, then it is
among the channels of ¢g or ¢; only.

Class 0 channels are used by two types of row messages:
DIMgy4 and DIMg— messages. The DIMg; messages use vir-
tual channels of ¢y only on DIMgy physical channels, and
virtual channels of ¢o on left columns of the f-rings in the
network. The DIMg_ messages use virtual channels of co
only on DIMg_ physical channels, and virtual channels of
co on right columns of the f-rings in the network. The sets
of physical channels and, hence, the set of virtual channels
used by DIMg4 and DIMg_ are disjoint. Therefore, there
cannot be deadlocks among row messages. A similar argu-
ment can be used to show that DIM; 4+ and DIM; - messages
use disjoint sets of physical channels.

3.1 Handling overlapping fault rings

The above routing method can be easily extended to han-
dle overlapping f-rings, when the sets of physical channels
of a pair of f-rings are not disjoint. The routing logic re-
mains the same. Because of increased sharing of physical
channels more classes of virtual channels are needed to
ensure deadlock-free routing.

When two f-rings overlap along a column (respectively,
row), some physical channels in that column (respectively,
row) belong to the left column (respectively, top row) of
one f-ring and to the right (respectively, bottom row) of
another f-ring. Take DIMy messages: our arguments for
DIMg messages for the nonoverlapping case are based on
the fact that they use disjoint sets of physical channels.
This i1s no longer true when f-rings overlap in a column.
Therefore, DIMo4+ and DIMo— messages should use disjoint
sets of virtual channels to break the new dependencies
and preserve deadlock freedom. Similarly, when two f-
rings overlap in a row, DIMi14+ and DIM;_ messages share
the physical channels of the row. Once again, new de-
pendencies, this time among DIM; messages, occur. To
break these dependencies we require three classes of vir-
tual channels: co,c1,c2. Virtual channels used by different
types of messages are given Table 2. Extending the above

Table 2: Use of virtual channels for misrouting messages
by the column-path algorithm for overlapping fault rings.

Message type | Channel | Used for
DIMg— co all hops
DIM1 4 c1 all hops
DIM; — co all hops
co DIMo hops
DIMo+ c1 DIM;— hops
co DIM1 4 hops

arguments, 1t can be shown the resulting routing is still

deadlock free.

3.2 Deadlocks on consumption channels

Another source of deadlocks unique to multicast worm-
hole routing is the dependency among messages waiting
for consumption channels. A unicast message upon reach-
ing its destination does not compete for any additional
communication resources. In multicast routing, however,
a message may hold consumption channel (from router to
processor) in one node and wait for other resources (com-
munication/consumption channels) elsewhere [3].

Figure 7 illustrates the routing of two multicast mes-
sages in a row of a two-dimensional mesh. The first mes-
sage, m1, originates at node a and has destinations b, c;
the second message, ms, originates at node d and has des-
tinations b, c. Furthermore, nodes a, b, ¢ are left neighbors
to b, c,d, respectively. The following scenario is shown in
Figure 7. The message m1 obtains the communication
channel from a to b, denoted [a,b], consumption channel
in b, denoted Consp, and communication channel [b,c];
m» obtains the communication channel [d, c], consumption
channel in ¢, Cons., and communication channel [c,b].
The reservation of the consumption channel is shown by
labeling the (flit) buffer associated to it with the name of
the message that has reserved it.

Due to flit-level flow control in wormhole routing, node
b can accept only the header flit (and may be a few data
flits if more than one flit is sent between nodes at a time)
of m1. Though the consumption channel in b is free, m1
cannot be consumed at b until it acquires the consumption



[ : Consumption channel flit buffer D : Communication channel flit buffer

Figure 7: Example of deadlocks on consumption channels.

channel in ¢ also. A similar condition occurs with the
consumption channel in ¢ and message m2. This causes
a circular wait on consumption channels between m1 and
m?2, which leads to deadlock.

One solution 1s to provide multiple classes of consump-
tion channels and allocate them to messages using spe-
cific rules. For the fault-free column-path algorithm, two
classes of consumption channels are sufficient [3]. One
class of consumption channels are used by messages that
travel on DIM;_ channels and the other class by messages
that travel on DIM14 channels. Messages that do not need
to take any DIM; hops can be treated as DIM14+ or DIM;—
messages.

Since we use two virtual channels on each physical
channel for fault-tolerant routing, more messages of each
type compete for consumption channels in routers. Fortu-
nately, the dependencies are still acyclic and therefore do
not cause deadlocks if two classes of consumption chan-
nels are used as in the original algorithm. To see this,
consider DIM14+ messages. Let ¢+ be the class of con-
sumption channels they use. Also let the rank of the c+
consumption channel in node (¢,7), 0 < 1,7 < k—1 be
7. A DIMi4 message needs to deliver data to nodes in
a single column only, and never takes DIM;_ hops, even
when misrouted. So, DIM;4+ messages do not cause cyclic
dependencies on the consumption channels of its class. A
similar argument can be used for DIM;_ messages. There-
fore, two consumption channels per router are sufficient to
eliminate deadlocks on consumption channels.

4 Fault-tolerant Hamilton path routing

In this section, we show that the Hamilton path based
dual-path and multi-path algorithms can be made fault-
tolerant, using two virtual channels per physical channel.
We address the dual-path algorithm specifically, since all
the dependencies that occur in multipath routing also oc-
cur in the dual path algorithm. In this section, Hamilton
path and dual-path are used synonymously.

As before, our approach is to leave the original routing
logic as it is and add new logic to help messages get around
faults when they are blocked. There is one worst case sce-
nario for the dual-path algorithm. This is shown in Figure
8. The source of a multicast message is (0,0) and its des-
tinations are (1,4),(2,1),(3,4),(3,1), in the order to be vis-
ited. Because of fault block {(1, 2), (2, 2), (3, 2)}, however,
the message travels on the f-ring many times, to preserve
the order in which destinations are visited if there are no
faults. This example shows that many classes of virtual
channels are required just to keep this message from dead-
locking itself. This can be avoided only when the message
travels on the f-ring only a few times (typically, once or
twice). Thus, faulty blocks spanning multiple rows cause
severe problems for Hamilton path algorithms. Therefore,

for Hamilton path algorithms, we restrict the fault model
to faults with f-rings of height (the number of links in a
column of the f-ring) of two or less. Examples of fault-
blocks with f-ring height two are less include (i) a block
of node-faults in a row, (ii) isolated DIMy link faults, and
(ili) all possible block faults involving DIM; links. Of these,
DIM; faults do not affect Hamilton path routing, since the
routing logic depends on fault-free DIM; links only on net-
work boundaries, which, in our fault model, are fault-free.
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Figure 8: Worst case block fault for Hamilton
path algorithms. Directed lines indicate the path
of a multicast message from node (0,0) to nodes
{(1,4),(2,1),(3,4),(3,1)}, visited in the order given.

Now, we present our fault-tolerance technique to han-
dle block faults with f-rings of height two or less. We
directly present our method for overlapping f-rings case.

Let M; (respectively, M, ) be the set of messages that
use the Hamilton path H; (respectively, H,) in the fault-
free network. We use two virtual channels for fault-tolerant
routing: c¢o is used exclusively by messages in class M; and
c1 1s used by messages in class M,. The fault-tolerant
routing algorithm is shown in Figure 9.

An M; message, if blocked by a faulty component in
a row, takes the clockwise orientation if the faulty com-
ponent is to the left of the message, and the counter-
clockwise orientation otherwise. An M, message, if blocked
by a faulty component in a row, takes the counter clock-
wise orientation if the faulty component is to the left of the
message, and the clockwise orientation otherwise. A mes-
sage can be blocked by a fault, while taking a column-hop,
only if it is trying to take a short-cut, since no component
on the network boundary is faulty. Hence, a message, if
blocked on a column-hop, simply continues to the next
node in the same row.

Theorem 1 Procedure Fault- Tolerant- Dual- Path- Routing
tolerates multiple block faults of height two or less.

Proof. First, we observe that messages in class M; use
co, while those in M, use ¢1. Hence, deadlocks, if occur,
can be only among either M; messages or among M, mes-
sages. Let us consider M; messages. Let Hj, (respectively,



Procedure Fault-Tolerant-Dual-Path-Routing(Message M)
/* Messages in class M; use co channels for all hops and those in class M, use c; for all hops. */
If the next hop of M is not blocked by a fault

route it as per the fault-free dual-path algorithm.

If the next hop of M is a row-hop which is blocked by a fault

1 Let z be the node at which M is blocked and let y be the node in the same row as  at the other end
of the f-ring. M is misrouted on the f-ring from x to y using the orientation given in Table 3.

If the next hop of M is a column-hop which is blocked by a fault

1 The column-hop is being used by M to take a short-cut.

2 M foregoes the opportunity to take the short-cut and takes a row-hop.

Figure 9: Modifications to the dual-path routing to handle faults.

Table 3: Orientations and virtual channels used Fault-
Tolerant-Dual-Path-Routing algorithm.

Message | Current F-Ring
Type Direction Orientation
of Travel (Virtual Channel)
M, DIMo+ Counter Clockwise (co)
DIMg— Clockwise (co)
M, DIMo+ Clockwise (c1)
DIMg— Counter Clockwise (c1)

H.p) be the H; (respectively, H,) network consisting only
of ¢, virtual channels, for p = 0, 1. For fault-tolerant
routing, M; messages use network Ho (Which is also used
for the fault-free case) and a part of the network Hyo.
Only those channels in H,o around the f-rings are used
for fault-tolerant routing of messages in M;. Figure 10 il-
lustrates this case for three overlapping f-rings in a 6 x 6
mesh. In this figure, messages in M; use channels in Hjo
(shown using thin lines with arrows) and a few channels
in H,o around the f-rings (shown using dashed lines with
arrows).

If an M; message is blocked at node z, then it is mis-
routed on the corresponding f-ring to node y, which is
in the same row as  and at the other side of the faulty
block. Thus, in Figure 10, a message blocked at & must
use links marked A, B, C' and D to reach y. As per our
fault-tolerant logic, a message, once it uses link A, must
use links B, C' and D to reach y. Hence, the path from
X to Y can be replaced with a single link from X to Y as
far as dependencies are concerned. The resulting depen-
dency graph is acyclic, and hence there cannot be dead-
locks among messages in class M;. A similar argument
holds for deadlock-freedom of messages in class M,,. |

Example. Consider a message from (5,2) with desti-
nations in {(4, 2), (3,3),(2,0), (1,2),(0,1)}. This message
takes the path indicated by thick lines with arrows in Fig-
ure 11. This message takes a short-cut from (5, 2) to (4, 2).
It tries to take a short-cut from (4,2) to (3,2). However,
since (3,2) is faulty, it is routed to (4,1), where it takes
a short-cut to (3,1). At (3,1), it is blocked by (3, 2), and
hence is misrouted to (3,3) as shown in Figure 11.

This example illustrates several possibilities for opti-

Figure 10: Links used by messages in M; for fault-tolerant
routing. Dashed lines with arrows indicate ¢y channels in
the network H,o, and thin lines with arrows indicate cg
channels in Hj. Thick (curved) lines indicate the net
effect of misrouting.

mizing the paths taken by messages. For example, (4,2)
can route the message to (4, 3) based on its knowledge that
node (3,2) is faulty; this allows the message to skip the
path from (4,2) to (3,1) and then back to (4,2). Using a
similar argument, the journey from (2, 0) to (1,0) and then
back to (2,0) can also be avoided. Such optimizations do
not introduce deadlocks, and can be used to improve the
latency of messages.

Consumption channel requirements of fault toler-
ant dual-path algorithm. It has been shown before
that, for dual-path and multi-path algorithms, two con-
sumption channels per node are sufficient to avoid dead-
locks on consumption channels [3]. One consumption chan-
nel is used by messages in class M; (traveling along H;)
and the other is used by messages in class M,. Even for
the fault-tolerant dual-path routing algorithm, two con-
sumption channels are sufficient to avoid deadlocks on con-
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Figure 11: Example of fault-tolerant dual-path routing.
Thick directed lines indicate the routing of a message from
node (5, 2) to nodes (4, 2),(3,3),(2,0), (1,2),(0,1).

sumption channels: one consumption channel is used by
M; messages and the other by M, messages, just as in the
fault-free case.

The proof of deadlock-freedom is based on the fact that
a message, while it is being misrouted, is not delivered to
a destination. In other words, no message waits for con-
sumption channels while it is being misrouted. To illus-
trate this, let us consider the message M in Figure 11.
This message is misrouted from (1,0) to (1,2) via (2,0).
Though (2,0) is a destination for this message, M would
have acquired the consumption in (2, 0) during its journey
from (2, 2) to (1,0). Hence, during misrouting M does not
need to wait for consumption channels. Since no message
waits for consumption channels while being misrouted, the
dependencies on consumption channels are the same as
those in the fault-free Hamilton path algorithms. Thus,
two channels are sufficient to avoid consumption channel
deadlocks for fault-tolerant Hamilton-path algorithms.

5 Summary and concluding remarks

In this paper, we have addressed the issue of reliable mul-
ticast communication in wormhole-switched multicomput-
ers. Our techniques handle multiple convex faults for
meshes. When a fault occurs, only the fault-free nodes
around the faulty components need to know the informa-
tion. The concept central to our approach is fault rings,
which are formed around each fault and are of rectangular
shape for 2-D meshes.

We have specifically considered two recently proposed
multicast algorithms: Hamilton path and column-path.
With two virtual channels per physical channel, multiple
convex faults with nonoverlapping f-rings can be handled
by the column-path algorithm. Overlapping f-rings can be
handled by the column-path with three virtual channels.

For Hamilton path based algorithms, providing fault-
tolerance is more complicated, since a message uses longer
paths and visits destinations in a predetermined sequence.

However, when convex faults are such that the height of
fault rings is two, two virtual channels per physical channel
are sufficient to provide fault-tolerant routing.

The column-path and Hamilton path algorithms have
different strengths. The column-path is compatible with
e-cube and can be easily implemented in the next gener-
ation e-cube routers. The column-path is especially at-
tractive when the number of destination is small [3]. The
Hamilton path algorithm is a specialized algorithm and
attempts to minimize congestion at sources of multicasts
by limiting the number of copies of a message to 2 or 4,
independent of the number of destinations. For large net-
works, a combination of these two algorithms may provide
more efficient communication with less source congestion.
In future, we plan to simulate the fault-tolerant versions
of the column-path and Hamilton path algorithms and es-
timate performance degradation due to faults.
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