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Abstract. We present a method to enhance wormhole rout-
ing algorithms for deadlock-free fault-tolerant routing in tori.
We consider arbitrarily-located faulty blocks and assume
only local knowledge of faults. Messages are routed via
shortest paths when there are no faults, and this constraint
is only slightly relaxed to facilitate routing in the presence
of faults. The key concept we use is that, for each fault re-
gion, a fault ring consisting of fault free nodes and physical
channels can be formed around it. These fault rings can
be used to route messages around fault regions. We prove
that at most four additional virtual channels are sufficient
to make any fully-adaptive algorithm tolerant to multiple
faulty blocks in torus networks. As an example of this tech-
nique, we present simulation results for a fully-adaptive al-
gorithm and show that good performance can be obtained
with as many as 10% links faulty.
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1 Introduction

Point-to-point torus and related networks are being used in
many recent experimental and commercial multicomputers
and multiprocessors [1, 22, 27, 6, 2]. A (k, n)-torus network
has an n-dimensional grid structure with k& nodes (proces-
sors) in each dimension such that every node is connected to
two other nodes in each dimension by direct communication
links.

The wormhole (WH) switching technique by Dally and
Seitz [10] has been used in many recent multicomputers
[22, 1, 20, 25]. In the WH technique, a packet is divided into a
sequence of fixed-size units of data, called flits. If a commu-
nication channel transmits the first flit of a message, it must
transmit all the remaining flits of the same message before
transmitting flits of another message. To avoid deadlocks
among messages, multiple virtual channels are simulated on
each physical channel and a pre-defined order is enforced on
the allocation of virtual channels to messages. Alternatives
to the wormhole switching are the virtual-cut-through [16]
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and store-and-forward switching techniques, which require
more storage at each routing node.

For fault-free networks, some of the most important is-
sues in the design of a routing algorithm are high through-
put, low-latency message delivery, avoidance of deadlocks,
livelocks and starvation, and ability to work well under var-
ious traffic patterns [12]. Given a network with faults, our
approach is to use the existing network rather than recreate
the original network using spare nodes and links. There-
fore, for networks with faults, a routing algorithm should
exhibit the following additional features: graceful degrada-
tion of performance, and ability to handle faults with only
a small increase in routing complexity and local knowledge
of faults—each non-faulty processor knows only the status
of its neighbors.

The well-known e-cube or dimension-order routing al-
gorithm is an example of non-adaptive routing algorithms,
since always a particular path is used in routing messages
between a pair of nodes even when multiple shortest paths
are available. With the e-cube, even a single fault disrupts
communication between multiple pairs of nodes. With in-
crease in adaptivity, a message is more likely to find a less
congested path or fault-free path. Therefore, the issue of
adaptivity—the extent of choice in selecting a path between
a pair of nodes in routing a message—plays an important
role in designing fault-tolerant routing algorithms.

Description of the problem and results. We present
a technique to enhance minimal, fully-adaptive routing al-
gorithms for fault-tolerant routing in tori. A minimal fully-
adaptive algorithm routes messages along any of the shortest
paths available. The other options are nonminimal fully-
adaptive algorithms and partially-adaptive algorithms. We
do not consider partially-adaptive algorithms in this paper,
since, in general, they do not performance well even for 2-
and 3-dimensional networks [4, 17].

Adaptive, nonminimal routing algorithms could cause
livelocks. To avoid livelocks, a “backup” nonadaptive rout-
ing algorithm is often used to guarantee the delivery of mes-
sages. For example, the dimension reversal schemes of Dally
and Aoki [9] have the e-cube algorithm as the backup algo-
rithm. The Tera computer [2] (which uses deflection routing
with store-and-forward switching) uses a Hamiltonian path
of the network for delivering messages that do not reach
their destinations within a certain amount of time. Further-
more, these backup algorithms cannot handle faults; addi-
tional routing techniques or resources must be used to solve
this problem.

We consider routing methods that use only local knowl-
edge of faults. We assume that faulty processors are con-
fined to one or more rectangular blocks. With the current
technology and anticipated advances in packaging, it is rea-
sonable to expect that each node (CPU-memory-router com-



bination) of a multicomputer could be implemented as a sin-
gle chip or as a multichip-module, with several such nodes
placed on a printed circuit board. The block-fault model
used in this paper accurately models the chip-, multichip
module-, and board-level faults.

For each fault region, there exist one or more paths that
pass through fault-free nodes and links and encircle the
fault. For a fault in a 2D torus, there is an undirected ring
of fault-free nodes and links; we refer to this ring as fault-
ring. The fault-ring around a block fault is rectangular in
shape. In this paper, we show that fault rings can be used
to route messages around the fault regions using only lo-
cal knowledge of faults, and without introducing deadlocks
and livelocks. Our techniques thus achieve fault-tolerance
without using spare nodes and physical channels.

Our techniques are especially suitable for the high-radix
(k > 2), low-dimensional (n = 2,3) tori commonly used in
the recent multicomputers [25]. We show, using simulations,
that graceful degradation of performance is achieved even
with 10% of the links faulty.

Related results. Adaptive, fault-tolerant routing algo-
rithms for WH and virtual cut-through switching techniques
has been the subject of extensive research in recent years
[7, 11, 21, 9, 14, 24, 3]. Several results have been reported
for fault-tolerant routing in hypercubes; see, for example,
[19, 26] and the references therein. The results for hyper-
cube exploit the rich interconnection structure of hypercubes
and are not suitable for high-radix, low-dimensional tori.

Reddy and Freitas [23] use global knowledge of faults,
spare nodes, and routing tables to investigate the perfor-
mance limitations caused by faults. Gaughan and Yalaman-
chili [13] use a pipelined circuit-switching mechanism with
backtracking for fault-tolerant routing. These two results
are applicable to networks with arbitrarily-shaped faults.
Our interest in this paper is to design fault-tolerant rout-
ing algorithms that can be applied with local knowledge of
faults. One important criterion is that the fault-free perfor-
mance should not be sacrificed for fault-tolerant routing.

Often, the results developed for meshes [9, 7, 5] can be ex-
tended to tori with suitable modifications, since meshes and
tori are closely related. The wraparound links in tori lead
to extra deadlock possibilities, however. Therefore, if the
results developed for meshes are applied with few changes,
then the number of virtual channels required to avoid dead-
locks may be doubled [7, 5].

The planar adaptive routing (PAR) by Chien and Kim [7]
is a partially-adaptive algorithm and provides fault-tolerant
routing using 6 virtual channels. But the PAR does not yield
good performance for 3 or higher dimensional networks [17].

In terms of adaptivity and performance comparisons, the
results by Dally and Aoki [9] are the most relevant to ours.
Dally and Aoki present fault-tolerant algorithms based on
the concept of dimension reversal, which occurs whenever
a message takes a hop in a dimension lower compared to
that of the previous hop. A message can be routed adap-
tively if the number of dimension reversals it has taken is
less than the number of highest virtual channel class (static
algorithm) or if the message finds a free channel in other
outgoing channels of the current host in a finite amount
of time (dynamic algorithm). The main advantage of their
algorithm is that arbitrarily shaped faults can be handled.
Their work presented for meshes can be easily applied to tori
by taking hops on wraparound links as dimension reversal
hops.

With the dimension-reversal schemes of Dally and Aoki,

a message may lose its adaptivity as described above. A
message that has lost adaptivity is routed by the e-cube
algorithm and is not guaranteed to be delivered to its desti-
nation if there are faults in the network. Thus the number of
virtual channels needed and the number of faults tolerated is
highly dependent on the location of faults and the misrout-
ing logic—which determines when to change the dimension
of travel—used.

In contrast, our algorithms can tolerate any number and
combination of rectangular faulty blocks with simple logic,
and require only four virtual channels' more than that re-
quired for the original adaptive algorithm. Furthermore,
our algorithms guarantee that each and every message in-
jected into the network is delivered. This result compares
well with our earlier result that four extra virtual channels
are sufficient for routing in meshes with faults [5].

Organization of the paper. Section 2 describes the fault-
model and the concept of fault-rings. Section 3 presents
our method to enhance fully-adaptive algorithms to toler-
ate multiple faulty blocks in two-dimensional tori. Section
4 gives the simulation results on the performance of a fully-
adaptive algorithm, which is originally developed for fault-
free networks and modified for fault-tolerant routing using
our method. Section 5 extends the proposed technique to
higher dimensional tori. Section 6 concludes the paper.

2 Preliminaries

A (k,n)-torus (also called k-ary n-cube) has n dimensions,
numbered from 0 to (n—1), and N = k" nodes. Each node is
uniquely indexed by an n-tuple in radix k. Each node is con-
nected via communication links to two other nodes in each
dimension. The neighbors of the node z = (zp—_1,...,%0) in
dimension 1 are (p—_1,...,%Tit1,&; £ 1,2i-1,...,%0), where
addition and subtraction are modulo k. A link is said to
be a wraparound link if it connects two neighbors whose
addresses differ by & — 1 in dimension ¢, 0 < ¢ < n. A
(k,n)-mesh is a (k,n)-torus with the wraparound connec-
tions missing.

We assume that each communication link actually rep-
resents two unidirectional physical communication channels.
The link between nodes = and y is denoted by < z,y >.

In the remainder of this section, we describe the fault
model considered in this paper and the concept of fault-
rings, which are created by faults. To simplify presentation,
we discuss these concepts for two-dimensional (2D) tori. We
label the sides of a 2D torus as North, South, East and West.

2.1 Wormbhole routing concepts for fault-free net-
works

Dally and Seitz [10] used the concept of channel dependency
graphs and multiple virtual channels to show deadlock free
wormhole routing on various networks. The channel depen-
dency graph is formed as follows. The virtual channels of the
network form the nodes of the channel dependency graph;
there is a directed edge from node u to v if there is a message
that has acquired the virtual channel u and is waiting or has
acquired the virtual channel v. A channel dependency graph
may be formed at any instant of the network operation for
any routing algorithm. A routing algorithm for an intercon-
nection network is deadlock free if there are no cycles in the
channel dependency graph formed at any time.

" Throughput this paper, we indicate the number of virtual chan-
nels on per physical channel basis.
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Figure 1: Three fault regions and their associated fault rings
in a6 x 6 torus.

In our proof methods, we consider maximal channel de-
pendency graphs and show that they are acyclic. A maximal
channel dependency graph for a network and an algorithm is
obtained by placing edges from virtual channel u to virtual
channel v if the routing algorithm allows the use of v after
using u for any message. All channel dependency graphs,
formed during routing, are subgraphs of the maximal de-
pendency graph for the routing algorithm used.

We consider only minimal routing methods as per which
a message always moves closer to its destination when not

blocked by a fault.

2.2 The fault model

We consider both node and link faults. All the links inci-
dent on a faulty node are considered faulty. Status signals
are continually sent on physical channels and monitored by
processors. Missing or incorrect sequences of signals indi-
cate malfunction of the link or the processor sending them.
In either case, the processor that is connected at the other
end stops using the link. We assume that all faults are non-
malicious faults; that is, a failed component simply ceases to
work. Therefore, only non-faulty processors generate mes-
sages. Furthermore, messages are destined only to fault-free
processors. These assumptions are commonly made in fault
analyses in literature.

We model multiple simultaneous faults, which could be
connected or disjoint. We assume that the mean time to
repair faults is quite large, a few hours to many days, and
that the existing fault-free processors are still connected and
thus should be used for computations in the mean time.

If global knowledge of faults is to be maintained in the
system, too many status messages (as faulty processors are
repaired and become functional and working processors be-
come faulty) may have to be transmitted on the network.
For massively parallel processors, faults could occur fre-
quently and routing tables could be expensive. Also, routing
algorithms that depend on global fault information should
have alternate schemes to route messages during the transi-
tion period—the interval from the time a fault occurred to
the earliest time it is known globally. Therefore, we develop
fault-tolerant algorithms, for which it is sufficient if each

non-faulty processor knows the status of the links incident
on it.

A fault set is defined as the set F' of faulty nodes and
links. For example, the fault-set F' = {(3,3),(3,4), (4,3),
(4,4),< (0,0),(0,1) >, < (1,2),(2,2) >} represents four
node faults and two link faults in the two-dimensional net-
work shown in Figure 1.

We assume that faults in a 2D torus have rectangular
shapes. A set I of faulty nodes and links in a 2D torus is
said to have a rectangular shape, if there is a rectangle in the
torus such that (a) there are no faulty components on the
boundary of the rectangle, (b) the interior of the rectangle®
includes all faulty components in F, and (c) the interior of
the rectangle contains no component that is not present in
F.

For example, the set F1 = {(3,3),(3,4),(4,3),(4,4)} of
faulty nodes shown in Figure 1 is rectangular, since the in-
terior of the rectangle — with corners (2,2), (2,5), (5,2),
and (5,5) — includes all faulty components in F' and no
non-faulty component (recall that a processor fault implies
that all links incident on it are faulty). However, the set
of faulty links F> = {< (1,1),(1,2) >,< (1,2),(2,2) >,<
(2,2),(2,1) >,<(2,1),(1,1) >} in a 6 x 6 torus is not rect-
angular, since any rectangle with nonfaulty elements on its
boundary contains at least one element not in F'. The faulty
link < (1,2),(2,2) > is an example of a rectangular fault re-
gion, since the interior of the rectangle with corners (1, 1),
(1,3), (2,1), and (2,3) contains only the faulty link. The
faulty link < (0,0), (0, 1) > in Figure 1 is considered rectan-
gular; the rectangle that covers the faulty link has processors
(1,0),(1,1),(5,1) and (5, 0) as its corners.

We call this model the block-fault model. Chien and Kim
[7] call this model the convex fault model. An f-region is
the fault region of the torus given by a block-fault. Un-
der the block-fault model, the fault-set in a 2D torus can
be written as a union of disjoint smaller fault sets, each
of which denotes an f-region. For example, the fault set
F in Figure 1 is in fact the union of three disjoint f-regions
{(3,3), (3.4), (4,3), (4, )}, {< (0,0), (0,1) >} and {< (1,2),
(2,2) >}. We also assume that faults do not disconnect the
network, an assumption commonly made in the literature
[7, 9]. If the network becomes disconnected, our results
given in [5] can be applied on the resulting subnetworks,
which are meshes.

There are many reasons to consider block faults. First,
they model several common fault scenarios such as faults of
isolated nodes and links and consecutive nodes in a row or
column. Second, an arbitrarily-shaped fault can be modeled
as a block-fault, albeit by labeling some non-faulty proces-
sors and/or links as faulty [7]. Finally, the block fault model
accurately models faults at the chip, multichip module, and
board levels.

2.3 Fault rings

Conceptually, fault regions may be considered as islands of
faults in a sea of communication channels and nodes. In the
same manner a ship is navigated around an island, it should
be feasible to route a message around fault regions. For this
purpose, we use the concept of fault rings, denoted f-rings.
For each f-region in a network with faults, it is feasible to
connect the fault-free components around the region to form
aring or chain. This is the fault ring for that region and con-
sists of the fault-free nodes and channels that are adjacent

?Interior of a rectangle is defined as the set of processors and links
that are not on the boundary of the rectangle.



(row-wise, column-wise, or diagonally) to one or more com-
ponents of the fault region. The f-ring of a block-fault has
rectangular shape. For example, the f-ring of the node fault
region {(3,3),(3,4),(4,3),(4,4)} in Figure 1 passes through
the fault-free nodes

(2,2),(2,3),(2,4),(2,5),(3,5), (4,5),
(5,5),(5,4),(5,3),(5,2),(4,2),(3,2)

as shown in Figure 1. The f-ring associated with the link
fault region {< (1,2),(2,2) >} has nodes {(¢,7) | 1 < ¢ <
2,1 < j < 3} in its perimeter. The f-ring for the faulty link
< (0,0),(0,1) > has nodes (1,0), (0,0), (5,0), (5,1), (0,1),
and (1, 1) on its perimeter.

A fault-free node is in the f-ring only if it is at most
two hops away from a faulty node or is adjacent to a node
with a faulty-link incident on it. There can be several fault
rings, one for each f-region, in a faulty network with multiple
faults. Up to two f-rings in a 2D torus may have a common
link, and up to four f-rings may have a common node. For
example, nodes (2,2),(2,3) and the link between them are
common to two f-rings in Figure 1.

A set of fault rings are said to overlap if they share one
or more links. For example, the two f-rings with (1,1) and
(2,2) as the northwest corner nodes overlap in Figure 1, since
they share a link.

An f-ring represents a two-lane path to a message that
needs to go through the f-region contained by the f-ring.
Thus, an f-ring simulates four paths to route messages in
two dimensions. Depending on the size of the f-region, phys-
ical channels in an f-ring may need to handle a large amount
of traffic compared to the other fault-free physical channels.
Further, routing messages around one or more fault-rings
creates additional possibilities for deadlocks. Hence, worm-
hole routing algorithms must be designed to handle addi-
tional congestion and deadlocks caused by faults.

When a fault occurs, the f-ring around it can be formed
in a distributed manner using a two-step process. In the
first step, each processor that detected a faulty link sends
this message to its neighbors in other dimensions. Based
on the set of messages received, each node that is to be on
the f-ring determines its position in the f-ring. There are
eight possible positions for a processor to be in an f-ring:
North West corner, North, North East corner, East, South
East corner, South, South West corner, and West. For more
details, the reader is referred to [5].

3 Fault-tolerant routing algorithms for 2D tori

In this section, we present techniques using which any fully-
adaptive routing algorithm can tolerate multiple rectangular
fault regions in a 2D torus. There are two types of fully-
adaptive algorithms: strongly and weakly fully-adaptive al-
gorithms. In a strongly fully-adaptive algorithm, a blocked
message retains its full-adaptivity. In contrast, with a weakly
fully-adaptive algorithm, a blocked message may lose some
or all of its adaptivity; so, it is more difficult to modify
weakly fully-adaptive algorithms for fault-tolerant routing.
Our results are applicable only to strongly fully-adaptive al-
gorithms. Henceforth, a reference to a fully-adaptive al-
gorithm is actually a reference to a strongly fully-adaptive
algorithm. For the most part of the section, we assume
that the faults in a torus are such that the resulting f-rings
are nonoverlapping. However, at the end of the section,
we indicate how fault-tolerant routing can be achieved with
overlapping f-rings.

A message is said to be blocked by faults at node x if
there 1s no fault-free link < z,y > such that the hop from =
to y is along the shortest path from z to d.

The following lemma forms the basis for the result pre-
sented in this section.

Lemma 1 Consider a 2D torus with multiple rectangular
fault blocks. Suppose that a message with destination d is
being routed in the torus using a fully-adaptive routing algo-
rithm. If the message s blocked at a node, say x, then the
addresses of x and d differ in exactly one dimension.

Proof: We prove this by contradiction. Assume that the
message 1s blocked at node x and that z and d differ in
both dimensions. It can be easily verified that under the
block-fault model, a nonfaulty node can have faulty links
incident in at most one dimension. If  has no faulty links
incident on it, then a hop in either dimension will take the
message closer to its destination. If # has one or both links
in a dimension faulty, then one of the links in the other
dimension takes the message closer to its destination. In all
cases, the message can move closer to its destination and
cannot be blocked. This contradicts the assumption that
the message is blocked at z. |

To distinguish blocked messages from others, we use the
concept of message status, which could be unaffected or af-
fected. A message is injected into the network with the un-
affected status. When an unaffected message is blocked by
a fault, its status is changed to affected, and it retains this
status for the remainder of its journey. In our method, when
a message becomes affected, it starts using a special class of
virtual channels. The class of virtual channels used by an
affected message is based on the dimension and direction it
needs to travel to reach its destination.

Consider a message with destination d = (di,do). Let it
become affected at node = (1, zo). From Lemma 1, it is
clear that the message needs to travel in only one dimension;
that is, either x; = dy or xo = do. In each dimension,
there are two possible directions. Thus, there can be four
different types of affected messages: 07, 07, 1%, and 1.
The message is termed a 0+—message if di = z1 and do >
xo. Furthermore, it is a ot M message 1f it will not use
a wraparound link in dimension 0; otherwise it is a 0T W-
message. There are eight types of affected messages for a
2D torus and are given in Table 1.

When a message becomes affected, its type is determined
and assigned. This type is used to determine the virtual
channel class to be used for remainder of the message’s jour-
ney, and the orientation (direction of travel) to be used when
routed on an f-ring. Table 1 gives this information for each
of the eight possible message types.

Routing affected messages. The fault-tolerant version
of a generic fully-adaptive algorithm F, denoted F;, uses
four virtual channels — c¢q, ¢1, ¢c2 and ¢3 — in addition to
those used by F. Channel cq is used exclusively by 0T af-
fected messages (both 0T M and 0YW); similarly, virtual
channel classes c1,ca, c3, respectively, are used exclusively
by 07,1% 17 messages, respectively. Rules to route vari-
ous messages are specified in procedure Fully-Adaptive-2D
(Figure 2).

Example. In Figure 4, three faulty nodes — (1, 0), (4,
1) and (5, 4) — are present. There are three f-rings corre-
sponding to these three faulty nodes. Several messages in



Table 1: Virtual Channels and F-Ring Orientations Used by Affected Messages

Conditions Satisfied

Message Type |

| Virtual Channel | F-Ring Orientation |

ot M dy =z & do >0 & (do — 20) < [k/2] | co Clockwise
otw dy =z & do >0 & (do — x0) > [k/2] | co Counter-Clockwise
0—M di =z & o0 >do & (xog —do) < [k/2] | &1 Clockwise
o—w di=z1 & x0 >do & (xog —do) > [k/2] | &1 Counter-Clockwise
1T M (di—x1) < |k/2] & di > 21 & do =20 | 2 Clockwise
1w (d1 — xl) |k/2] & dy > 21 & do =m0 | 2 Counter-Clockwise
1-M (r1 —dy) < |k/2] & di <21 & do =20 | cs Clockwise
1-W (x1 —dy) > |k/2] & di <21 & do =20 | cs Counter-Clockwise

(x = (%1, %0) is the node at which the message is affected, and d = (d1, do) is its destination)

PROCEDURE FULLY-ADAPTIVE-2D(M)
/* Uses four additional virtual channels co, c1, c2, cs */

RULE 1: If M is unaffected, reserve virtual channels and links according to F.

RULE 2: If M is a 0T -message, route it using virtual channel co for the rest of its journey. Virtual channel c; is used
exclusively for 0™ -messages, co for 1T-messages and cs for 1™ -messages.

Let d be the dimension in which the message was blocked when it was affected. Let d be the other dimension. Let
a legal hop be defined as a hop in d that takes the message closer to its destination.

CASE 1: If the current host and destination match in dl7 and the legal hop is available, it is taken (see Figure 3).

CAsE 2: If M is a message on an f-ring, it routed using the virtual channel and orientation shown in Table 1 until
/
it reaches the other parallel side of the f-ring such that current host and destination match in d (see Figure 3).

/* Uses a generic fully-adaptive algorithm F */

Figure 2: Fault-tolerant routing logic for 2D tori.

this figure and their routes are indicated in Table 2. For ex-
ample, the message from (5, 2) to (3,1) is first routed from
(5,2) to (5,1). It becomes affected by fault (4,1) at (5,1).
Since it needs to travel from (5,1) to (3, 1), it is labeled as
a 17 M message. From the rules for 17 M messages (see Ta-
ble 1), it is routed in the clockwise orientation using virtual
channel cs.

Theorem 1 Assume that the fully-adaptive routing algo-
rithm F correctly routes messages and is deadlock-free. The
fault-tolerant fully-adaptive routing algorithm F; described
by RULES 1-2 (in procedure Fully-Adaptive-2D) is deadlock-
free in the presence of multiple rectangular fault blocks and
delivers messages correctly between any pair of nonfaulty
nodes.

Proof. Algorithm F; correctly routes unaffected messages
between any pair of nonfaulty nodes, since F correctly routes
messages. Since the virtual channels used for affected mes-
sages are different from those used for unaffected messages,
the statement is true for all unaffected messages. To com-
plete the proof, we need to show that affected messages are
also routed correctly without deadlocks and livelocks.

To see that the procedure Fully-Adaptive-2D correctly
delivers messages, observe that (i) an affected message is
misrouted only around an f-ring, (ii) a message, once it
leaves an f-ring will never revisit it, (iii) an affected mes-
sage takes only a finite number of hops on each f-ring, and
(iv) there are a finite number of f-rings in the torus. These
four observations show that a message i1s delivered to its

destination in a finite number of hops and that there are no
livelocks in the system.

We next prove the deadlock-freedom of the procedure
Fully-Adaptive-2D. Unaffected messages cannot be involved
in a deadlock, since F is deadlock-free and since they do
not require or wait for the virtual channels c¢o, ¢1, ¢c2 and
ca. Among affected messages, 01 -messages use only virtual
channel co; similarly, a distinct virtual channel is used for
messages of each type. Thus, it is enough if we show that
there are no deadlocks among 0" -messages.

There are two types of 07 messages: 0T M and 0t W.
The part of the network used by 07 M messages consists of
row channels in the East direction and column channels in
the North direction in the West columns and South chan-
nesl in the East columns of f-rings. Its underlying graph is
acyclic. Similary, 07 W uses an acyclic network of ¢¢ chan-
nels. Therefore, a deadlock among 0F-messages involves
both 0t M 0TW messages. But 07 M and 0T W messages
use disjoint sets of physical channels. This is obvious for
the physical channels that are not part of the f-ring, since
07 M messages travel from West to East, and 0T W messages
from East to West when not misrouted. From Table 1, it
is clear that 07 M and 0t W messages reserve virtual chan-
nels on physical channels in clockwise and counter-clockwise
directions, respectively, on an f-ring. Therefore, there is no
dependency among the 0% messages. Similarly, we can prove
the deadlock freedom for other types of messages. |

Fault-tolerant routing with overlapping f-rings. Thus
far, we have assumed that faults are such that the f-rings



Table 2: A Few Messages in the Faulty Network of Figure 4

LB

Figure 3: Routing of affected messages in a 2D torus us-
ing procedure Fully-Adaptive-2D. The message destined to
(D1, Do) becomes affected at (X1, Xo). Here X1 = Y1 = Dy.
Routing of the message from (X1, Xg) to (Y1, Yp) is done us-
ing CASE 2 of RULE 2 of procedure Fully-Adaptive-2D, and
routing from (Y1, Y5) to (D1, Do) is done using CASE 1.

do not overlap. However, this is not a serious restriction.
If f-rings overlap, then deadlock-free fault-tolerant routing
may be provided using either one of the following methods.

o When two f-rings overlap, deadlocks may occur when,
for example, 0T M and 0t W messages use the same
physical channels in the column shared by the overlap-
ping f-rings. This can be avoided by using two virtual
channels (instead of one) for 0% messages. Similarly,
two virtual channels for each of 07,17, 17 message
types are needed. Therefore, this technique requires
eight extra virtual channels.

e An alternative is to route an affected message such
that it does not use wraparound links in the only di-
mension it needs to travel at the time it is affected.
For example, a 0% M message is routed as before. But
a 0T W message is also routed as a 07 M message; this
means that a 0TW message is not routed along its
shortest path. This ensures that the physical channels
used by 07 messages form an acyclic directed graph.
Since each message type uses a distinct class of virtual
channels, the routing is deadlock free.

4 Simulation results

To study the performance issues, we have developed a cycle-
by-cycle simulator. This simulator can be used for wormhole
routing in k-ary n-cubes with and without faults. In this
section, we present simulation results on the performance of
the negative-hop (NHop) algorithm [4]. The NHop provides

Src Dest | Affected at | Affected by | Message | Virtual | Orientation Path
Faulty Node | Type Channel Indicated by
(0,0) | (2,0) | (0,0) (1, 0) 1T M c2 Clockwise Solid thick lines
(1,1) | (1,5) | (1, 1) (1, 0) oTw co Counter-Clockwise | Dashed thick lines
(0,4) | (4,4) | (0, 4) (5, 4) 17w c2 Counter-Clockwise | Solid thick lines
(5,3) | (5,5) | (5,3) (5, 4) 0T M co Clockwise Dashed thick lines
(5,2) 1 (3,1) | (5, 1) (4, 1) 1M cs Clockwise Dashed thick lines
(4,2) | (4,0) | (4,2) (4, 1) 0~ M c1 Clockwise Solid thick lines
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Figure 4: Routing of three messages using the fault-tolerant
version of a fully-adaptive routing algorithm. There are
three f-rings corresponding to the three faulty nodes (1,0),
(4,1) and (5,4). Various messages in this network and how
they are routed is indicated in Table 2.
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minimal, fully-adaptive, and deadlock-free routing in fault-
free tori using [n[k/2]/2] + 1 virtual channels.

The negative hop wormhole algorithm is based on the
store-and-forward algorithm by Gopal [15]. To use the neg-
ative hop algorithm, the network is colored, and each node is
given a label corresponding to its color. A hop by a message
is a negative hop if it moves from a node with higher label
to a node with lower label. Any other hop is a nonnegative
hop. Messages when injected have 0 negative hops and are
routed minimally when there are no faults. If a message has
taken ¢ > 0 negative hops, then it uses virtual channels of
class ¢ for its next hop.

In our simulations, we have used the NHop algorithm,
developed originally for fault-free networks, and fortified it
with four additional channels and the fault-tolerant logic
described in Section 3.

We have simulated a 16 x 16 torus for the uniform traf-
fic pattern and 20-flit messages. The virtual channels on a
physical channel are demand time-multiplexed, and it takes
one cycle to transfer a flit on a physical channel. The mes-
sage interarrival times are geometrically distributed. We use
the uniform traffic model.
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Figure 5: Performance of the NHop algorithm for uniform traffic in a 16 x 16 torus with various faults. The extension dp
indicates the results for d% faults. 16 virtual lanes per physical channel are used: twelve lanes are distributed among the
nine fault-free virtual channels, and one lane is provided for each of the four extra virtual channels required for fault-tolerant
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Figure 6: Performance of the NHop algorithm for uniform traffic in a 16 x 16 torus for different number of faults. One lane
per virtual channel and 20 virtual channels are used for this algorithm. For each fault case with a certain number of faults,
10 different fault sets are randomly generated and the performance metrics are averaged.

We use bisection utilization and average message latency
as the performance metrics. The bisection utilization (ps) is

defined as

Message length
Bisection BW °

(# messages across the bisection/cycle) *

The bisection bandwidth (BW) is defined as the maximum
number of flits that can be transferred across the bisection
in a cycle, and is proportional to the number of nonfaulty
links in the bisection of the network. The maximum value of
pu 18 1.0. For fault-free networks with uniform traffic, the bi-
section utilization and channel utilization are the same. For
networks with faults, they differ. But bisection bandwidth
is more easily tractable and provides a consistent measure of
performance. The half-width of the 95% confidence interval
for each point shown in the graphs is within 4% of the value
reported.

Dally [8] has shown that providing multiple lanes im-
proves the performance of wormhole algorithms consider-
ably. In view of this fact, we have used 16 virtual lanes
per physical channel. The fault-tolerant NHop has 13 vir-
tual channel classes (9 for fault-free routing and 4 extra for
fault-tolerant routing); we distributed 12 lanes among the 9

normal, fault-free classes and allocated 1 lane to each of the
four special, fault-tolerant classes.

To facilitate simulations at and beyond the normal satu-
ration points for the routing algorithm, we have limited the
injection by each node. This injection limit is independent
of the message interarrival time; the motivation for injection
control is due to Lam [18]. After some experimentation, we
have chosen an injection limit of 4 for the NHop; that is, a
node is not allowed to inject a new message if four or more
messages generated by it are still in the node. Too high an
injection limit leads to uncontrolled latencies at saturation;
too low an injection limit reduces throughputs around the
saturation slightly. For the value we have selected, there is
little effect on the latency and throughput achieved by the
algorithm prior to the saturation of network.

4.1 Performance for various fault cases

We have simulated a 16 x 16 torus with 1%, 5%, and 10%
of the total network links faulty. Specificly, for the 1% case,
we have set, randomly, a node and link faulty; since 4 links
are incident on a node, 5 of the 512 links in the network are
faulty. For the 5% fault case, we have set 4 nodes and 10



links faulty; for the 10% fault case, we have set 9 nodes and
15 links faulty. In each case, we have randomly generated
the required number of faulty nodes and links. To see the
performance degradation with faults, we have simulated the
routing algorithm on a fault free torus also.

Since we have simulated only isolated faults, a slightly
more flexible version of fault-tolerant logic can be used with-
out creating deadlocks. This flexible version uses any of the
orientations—clockwise or counter-clockwise—to route any
affected message. The simulation results reported in this
section are for the NHop fortified with this flexible fault-
tolerant logic. We have incorporated two more improve-
ments that are specific to the NHop algorithm: (1) a message
that has taken 1 negative hops can use virtual channels in
any of classes 0,...,¢; (2) an affected message is allowed to
use channels in normal classes even for misrouting until it
takes more negative hops than the number of normal virtual
channel classes, at which point one of the four special chan-
nels is used for the remainder of its journey. These changes
do not introduce any deadlocks among messages routed by
the NHop algorithm.

The results for various fault cases are given in Figure
5. For the fault-free network, the NHop has a peak utiliza-
tion of 0.755 at a latency of 191 cycles. The NHop shows
a graceful degradation of performance in the presence of
faults. The message latencies with faults are higher; the
utilization ranges from 0.648 to 0.735.

4.2 Peak performance

Comparative performance across different fault cases in Fig-
ure 5 is specific to the fault sets used. Therefore, we have
further simulated the NHop for 1, 5, and 10 percent faults.
For each case, we have simulated 10 different fault sets for
100% traffic load. (The injection control helps us here; oth-
erwise, we would have to perform the tedious task of deter-
mining the saturation point for each fault set and for each
fault case.) The values obtained from the ten different fault
sets are averaged and shown in Figure 6.

As the number of faults is increased, the latency increases
steadily and the utilization drops steadily. Comparing the
fault-free case and 10%-faults case, we note that NHop has
31% increase in latency and 15% decrease in throughput.

Our previous results [5] indicate that the fault-tolerant
version of NHop exhibits a similar graceful degradation in
performance in meshes with faults. In particular, the NHop
for mesh exhibits a 20% drop in throughput from the fault-
free case to the case with 10% faults. Dally and Aoki [9] indi-
cate that the dynamic dimension-reversal algorithm exhibits
a similar graceful degradation of throughput for meshes.

5 Fault-tolerant routing in multidimensional tori

In this section, we extend the results of Section 3 to multi-
dimensional tori using the results for 2D and 3D tori as the
base cases.

The block-fault model for n-dimensional tori is defined
as follows. An n-dimensional box has a base node z =
(£n-1,-..,20) and apex node y = (yn—1, ..., yo) and the set
of nodes of the form t = (¢n—1,...,t ) such that z; <& <y,
for 0 < i < n. If a fault set is contained in an n-dimensional
box such that the interior of the box has only the faulty
components and none on its exterior, then the fault-set rep-
resents a block-fault.

A set F of faulty nodes and links in a (k,n)-torus is
said to be a block-fault if F' can be written as the union

of disjoint subsets Fi, F3, ..
faulty-block by itself.

It is noteworthy that the n-dimensional block fault still
appears as a block fault in each k x k 2D plane it touches.
Therefore, the results for 2D tori can be applied with suit-
able modifications.

Our main result in this section is that any fully-adaptive
routing algorithm for an n-dimensional tori can be made
fault-tolerant by using four additional virtual channels per
physical channel.

As in the two-dimensional case, a message is said to be
blocked by faults if all of its shortest paths go through one
or more fault regions. A message that is blocked for the
first time becomes an affected message and remains so for
the rest of its journey.

., Fy such that each Fj is a

Lemma 2 A message destined to d is blocked at a node, say
x, only if and the addresses of x and d differ in exactly one
dimension.

The proof is similar to that Lemma 1 and is omitted.

From Lemma 2, it is clear that when a message becomes
affected by a fault, it needs to travel in only one dimension;
however, its journey along this dimension would have been
blocked by the faulty rectangular region. Let us consider
a message M with destination d which becomes affected at
z. M will be referred to as an i-message if it only needs to
travel in dimension ¢ when it becomes affected. Further, we
say that an affected message is an i¥-message (respectively,
i~ -message) if x; < d; (respectively, z; > d;). As before, an
iT message is actually an ¥ M or iT W message; an it M
message uses the clockwise orientation and iTW message
the counter-clockwise orientation when routed on an f-ring.

Before we consider routing in general n-dimensional tori,
we design fault-tolerant fully-adaptive routing algorithms
for 3D tori that use four additional virtual channels.

In a 3D torus, there are six types of affected messages
(0*t,07,1%,17,2%, 27). The planes and virtual channels
used to correct in the final dimension and are shown in
Table 3. The enhanced fully-adaptive routing algorithm is
shown in Figure 7.

Lemma 3 Assume that the original fully-adaptive routing
algorithm F is correct and deadlock- and livelock-free. The
procedure Fully-Adaptive-3D correctly routes messages in 3D
tori with faulty blocks and does not cause deadlocks or live-
locks.

The proof is similar to that of Theorem 1.

We use the Fully-Adaptive-2D and Fully- Adaptive-3D al-
gorithms to provide fault-tolerant routing in n-dimensional
tori. The routing logic is given in Figure 8.

The correctness, deadlock-freedom and livelock-freedom
of Fully-Adaptive-nD procedure follow from the correspond-
ing proofs for Fully-Adaptive-2D and Fully-Adaptive-3D pro-
cedures.

6 Concluding remarks

We have presented techniques to enhance fully-adaptive worm-
hole routing algorithms for fault-tolerant routing in tori. In
particular, we have shown that four extra virtual channels
per physical channel are enough to convert a fully-adaptive
wormhole algorithm for fault-tolerant routing.

We have used the block-fault model in which faulty pro-
cessors and links are in the form of multiple rectangular
regions of the network. The concept of fault-rings is used



PROCEDURE FULLY-ADAPTIVE-3D(M)
/* Uses four additional virtual channels co, c1, c2, cs */

2 If M reached its destination, stop.

1 Route M using algorithm F until M either reaches its destination or is affected by faults.

3 Determine the i for which M is an iT-message or an 1 -message. /* i € {0,1,2} */

4 Depending on the value of ¢, route M in the plane specified in Table 3 and using the virtual channels indicated.

/* Uses a generic fully-adaptive algorithm F */

Figure 7: Fully-adaptive routing in a 3D tori using four additional virtual channels.

Table 3: Virtual Channels Used by Messages in Algorithm fcube3D

Message Type | Plane Used | Virtual Channel Used

0% -message (0,1)-plane | co in both dimensions 0 and 1

0~ -message (0,1)-plane | ¢; in both dimensions 0 and 1

17 -message (1,2)-plane | ¢z in both dimensions 1 and 2

17 -message (1,2)-plane | cs in both dimensions 1 and 2
2+—message (27 0)—plane co 1In dimension 0 and c¢g in dimension 2
27 -message (27 0)—plane c3 in dimension 0 and c¢; in dimension 2

to route around the fault-regions. Each nonfaulty node can
determine its position in an f-ring using a distributed al-
gorithm based on exchanging messages with its neighbors.
Our algorithms are deadlock- and livelock-free and correctly
deliver messages between any pair of nonfaulty nodes in a
connected component of the network even in the presence of
multiple faulty blocks.

The increase in routing-complexity to achieve fault toler-
ant wormhole routing is moderate. The status of a message
and its type (to indicate its virtual channel class and its
direction on f-rings) can be maintained using a few bits in
its header. The other overhead is changing the status and
setting the type of a message blocked for the first time. This
is done just once for each misrouted message. The type of
a misrouted message is determined by comparing the ad-
dresses of the current host and destination of the message.

To study the performance issues, we have taken a fully-
adaptive wormhole algorithm, NHop, developed originally for
routing in fault-free networks, and fortified it with extra vir-
tual channels and the fault-tolerant logic described in this
paper. Our simulation results indicate that the NHop ex-
hibits graceful degradation in performance as the number of
faulty components in the network increases.

There are no previous specific results for fault-tolerant
routing in tori. Often, the results developed for meshes can
be extended to tori with suitable modifications. For exam-
ple, the dimension reversal algorithm by Dally and Aoki [9],
described in the context of meshes, can be applied to tori
by considering the hops on wraparound links as dimension
reversal hops. It is not clear whether the results by Glass
and Ni [14] and Chien and Kim [7], developed specifically
for meshes, can be applied to tori in a similar manner. Our
experience is that the wraparound links in a torus create
more possibilities of deadlocks. If the results developed for
meshes are to be applied with few changes, then the num-
ber of channels required to avoid deadlocks may have to
be doubled. In this paper, we have shown that four ex-
tra virtual channels are sufficient for tori for deadlock-free

fault-tolerant routing. This result compares well with our
earlier result that four extra virtual channels are sufficient
for deadlock-free fault-tolerant routing in meshes [5].

The concept of fault rings can be extended to faults of
arbitrary shape. In such cases, the fault rings do not have a
regular shape. Using the concept of fault rings, one arbitrary
shaped fault of any size can be tolerated in a 2D torus.
The results presented here appear to be applicable to the
case where there are multiple arbitrarily-shaped connected
faults and each fault region can be inscribed in a rectangle
on the torus (n-dimensional box on an n-dimensional torus)
without including faults from other fault regions. We are
currently pursuing this topic.
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