848

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 7, JULY 1995

Fault-Tolerant Wormhole Routing Algorithms
for Mesh Networks

Rajendra V. Boppana and Suresh Chalasani

Abstract—We present simple methods to enhance the current
minimal wormhole routing algorithms developed for high-radix,
low-dimensional mesh networks for fault-tolerant routing. We
consider arbitrarily-located faulty blocks and assume only local
knowledge of faults, Messages are routed minimally when not
blocked by faults and this constraint is relaxed to route around
faults. The key concept we use is a fault ring consisting of fault-
free nodes and links can be formed around each fault region. Our
fault-tolerant techniques use these fault rings to route messages
around fault regions. We show that, using just one extra virtual
channel per physical channel, the well-known e-cube algorithm
can be used to provide deadlock-free routing in networks with
nonoverlapping fault rings; there is no restriction on the number
of faults. For the more complex faults with overlapping fault
rings, four virtual channels are used. We also prove that at most
four additional virtual channels are sufficient to make fully-
adaptive algorithms tolerant to multiple faulty blocks in
n-dimensional meshes. All these algorithms are deadlock- and
livelock-free. Further, we present simulation results for the
e-cube and a fully-adaptive algorithm fortified with our fault-
tolerant routing techniques and show that good performance may
be obtained with as many as 10% links faulty.

Index Terms—Adaptive routing, block faults, deadlocks, fault-
tolerant routing, mesh networks, multicomputer networks, per-
formance evaluation, wormhole routing.

I. INTRODUCTION

P OINT-TO-POINT k-ary n-cube and related networks are be-
ing used in many experimental and commercial parallel
computers [1], [27], [24], [30]. In addition, k-ary n-cube based
networks are becoming popular for reliable and high-speed
communication switching [26]. A k-ary n-cube network has an
n-dimensional grid structure with & nodes (processors) in each
dimension such that every node is connected to two other
nodes in each dimension by direct communication links.

The wormhole (WH) switching technique by Dally and
Seitz [12] has been widely used in the recent multicomputers
[271, [24], [30]. In the WH technique, a packet is divided into
a sequence of fixed-size units of data, called flits. If a com-
munication channel transmits the first flit of a message, it must
transmit all the remaining flits of the same message before
transmitting flits of another message. To avoid deadlocks
among messages, multiple virtual channels are simulated on
each physical channel and a pre-defined order is enforced on

Manuscript received Dec. 7, 1993; revised May 31, 1994,

R.V. Boppana is with the Division of Computer Science, the University of
Texas at San Antonio, San. Antonio, TX 78249-0664; e-mail: boppana@
ringer.cs.utsa.edu.

S. Chalasani is with the Department of Electrical and Computer Engineer-
ing, University of Wisconsin-Madison, Madison, WI 53706-1691; e-mail:
suresh@cauchy.ece.wisc.edu.

IEEECS Log Number C95068.

the allocation of virtual channels to messages. Alternatives to
the wormhole switching are the virtual-cut-through {20] and
store-and-forward [18] switching techniques, which require
more storage at each routing node.

For fault-free networks, some of the most important issues in
the design of a routing algorithm are high throughput, low-
latency message delivery, avoidance of deadlocks, livelocks, and
starvation, and ability to work well under various traffic patterns
[14]. For networks with faults, a routing algorithm should ex-
hibit a few additional features: graceful performance-
degradation, and ability to handle faults with only a small in-
crease in routing complexity and local knowledge of faults—
each nonfaulty processor knows only the status of its neighbors.

The well-known e-cube algorithm routes messages in a
strictly ascending order of dimensions; that is, a message takes
hops in dimension O (if any), then in dimension 1 (if any), and
so on to reach its destination. Thus, the e-cube algorithm uses
a fixed path to route messages between a pair of nodes even
when multiple shortest paths are available, and is termed
nonadaptive. Routing algorithms that permit the use of all the
paths between a source-destination pair by messages are
known as fully-adaptive routing algorithms.

Problem definition. In this paper, we address the issue of
incorporating fault-tolerance into both fully-adaptive and
nonadaptive wormhole routing algorithms. We first develop
our techniques for the e-cube algorithm, which has been used
in many recent parallel computers [27], [33], {1], [24], [30].
Next, we develop a methodology to enhance fully-adaptive
algorithms for fault-tolerant routing.

Our routing techniques require only local knowledge of
faults and work correctly when faulty components are confined
to one or more rectangular blocks. With the current technology
and anticipated advances in packaging, it is reasonable to ex-
pect that each node (processor-memory-router combination) of
a multicomputer could be implemented as a single chip or as a
multichip-module, with several such nodes placed on a printed
circuit board. The block-fault model used in this paper accu-
rately models faults at the chip, multichip module, and board
levels.

Related results. Routing algorithms for WH and virtual
cut-through switching techniques has been the subject of ex-
tensive research in recent years {8], [13], {16], [11], [17], [29],
[3]. Several results have been reported for fault-tolerant rout-
ing in hypercubes; see, for example, [22], [7], [31], [32] and
the references therein. The results for hypercube exploit the
rich interconnection structure of hypercubes and are not suit-
able for high-radix, low-dimensional meshes.

0018-9340/95%04.00 © 1995 IEEE

BOPPANA AND CHALASANI: FAULT-TOLERANT WORMHOLE ROUTING ALGORITHMS FOR MESH NETWORKS 849

Reddy and Freitas [28] use global knowledge of faults—
which is difficult to maintain in a massively parallel proces-
sor—and routing tables to study the performance limitations
caused by faults. Gaughan and Yalamanchili [15] use a pipe-
lined circuit-switching mechanism with backtracking for fault-
tolerant routing. Glass and Ni [17] present the negative-first
algorithm, which tolerates up to (n — 1) faults in an
n-dimensional mesh without any extra virtual channels. Unfor-
tunately, the negative-first and its related algorithms do not
have good performance for the fault-free case [4], and the
number of faults tolerated is small, for example, one in a 2D
mesh.

The works by Dally and Aoki [11] and by Chien and Kim
[8] are the most relevant to our work. The similarities and dif-
ferences between our work and theirs are explained below.

Chien and Kim [8] present a partially adaptive algorithm to
handle block faults in meshes. Their method uses three virtual
channels for fault-tolerant routing. However, their method
cannot handle faults on the boundaries of mesh without exces-
sive loss of computational power. For example, to handle a
node fault in the top row of a 2D mesh, all other nodes in that
row must be labeled faulty.

In contrast, our work applies to fully-adaptive and
nonadaptive algorithms and handles faults on the network
boundaries using four virtual channels. We also present a
method that requires only two virtual channels for simpler fault
cases.

Dally and Aoki {11] present fault-tolerant algorithms based
on the concept of dimension reversal, which occurs whenever
a message takes a hop in a dimension lower compared to that
of the previous hop. A message can be routed adaptively if the
number of dimension reversals it has taken is less than the
number of highest virtual channel class (static algorithm) or if
the message finds a free channel in other outgoing channels of
the current host in a finite amount of time (dynamic algo-
rithm). The main advantage of their algorithm is that arbitrarily
shaped faults can be handled. With the dimension-reversal
schemes of Dally and Aoki, a message may lose its adaptivity
as described above. A message that has lost adaptivity is
routed by the e-cube algorithm and is not guaranteed to be
delivered to its destination if there are faults in the network.
Thus the number of virtual channels needed and the number of
faults tolerated is dependent on the location of faults and the
misrouting logic—which determines when to change the di-
mension of travel—used.

In contrast, our algorithms can tolerate any number and
combination of rectangular faulty blocks with simple logic
using only a constant number of virtual channels. Further, each
and every message that is injected into the network is guaran-
teed of delivery to its destination.

The rest of this paper is organized as follows. Section II de-
scribes the fault-model used in this paper. This section also
introduces the concept of a fault ring. Section III presents a
fault-tolerant e-cube algorithm that tolerates multiple faulty
blocks in two-dimensional meshes. Section IV proves that any
fully-adaptive routing technique can be modified to tolerate
multiple faulty blocks in a two-dimensional mesh using four

additional virtual channels per physical link. Section V gives
the simulation results on the performance of these schemes in
the presence and absence of faults. Section VI presents tech-
niques to extend our results to n-dimensional meshes. Sec-
tion VII summarizes the work reported in this paper and pres-
ents possible directions for future work.

II. PRELIMINARIES

We use the following notation for mesh and torus networks.
A (k, n)-torus (also called k-ary n-cube) has » dimensions,
denoted DMy, ..., DIM,_;, and N = &" nodes. Each node is
uniquely indexed by an n-tuple in radix & [2]. Each node is
connected via communication links to two other nodes in each
dimension. The neighbors of the node x = (x,_, ..., Xp) in DIM;,
0<i<n,are (X4, ..., Xis1, Xi £ 1, X4, ..., Xp) Where addition
and subtraction are modulo k. A link is said to be a wrap-
around link if it connects two neighbors whose addresses differ
by k= 1in DIM;. A (k, n)-mesh is a (k, n)-torus with the wrap-
around connections missing. The well-known binary hyper-
cube is the (2, n)-mesh. In this paper, we consider (k, n)-mesh
networks with small n, large k, and bidirectional links—
implemented using two unidirectional physical communication
channels. We denote the link between nodes x and y by <x, y>
and virtual channels of class i as ¢;, We assume that a crossbar
is used in each router, as in the Torus Routing Chip [9], to
connect its input channels to its output channels.

A message that reaches its destination is consumed in finite
time. Following Dally and Seitz [12], we use the concept of
channel dependency graphs and multiple virtual channels to
investigate deadlock properties of routing algorithms. Using
extra logic and buffers, multiple virtual or logical channels can
be simulated on a physical channel in a time-demand multi-
plexed manner [10], [5]. We always specify the number of
virtual channels on per physical channel basis. The channel
dependency graph is formed as follows. The virtual channels
of the network form the nodes of the channel dependency
graph; there is an edge from virtual channel u to virtual chan-
nel v if the routing algorithm allows the use of v after using u
for any message.

In the remainder of this section, we describe the fault model
considered in this paper and the concept of fault-rings, which
are created by faults. To simplify presentation, we discuss
these concepts for two-dimensional (2D) meshes. We label the
sides of a 2D mesh as North, South, East and West. We gen-
eralize these concepts to multidimensional meshes in Sec-
tion VI. These results can be extended to tori with suitable
modifications [6].

A. The Fault Model

We consider both node and link faults. Link faults can also
be used to model partial faults of routers, for example, when
the buffer space associated with a channel is faulty in a node
that is otherwise perfect. A node fault is modeled by making
all links incident on it faulty. A node with no nonfaulty links
incident on it is considered faulty. We assume that faults are
nonmalicious—a failed component simply ceases to work.

850

Therefore, only nonfaulty processors generate messages. Fur-
thermore, messages are destined only to fault-free processors.
These assumptions are commonly made in fault analyses in
literature.

We model multiple simultaneous faults, which could be
connected or disjoint. We assume that the mean time to repair
faults is quite large, a few hours to many days, and that the
existing fault-free processors are still connected and thus
should be used for computations in the mean time.

The fault information may be made global—each fault-free
node knows all faults in the system—or local—each fault-free
node knows the status of its neighbors only. The global-
knowledge model requires some form of routing tables, which
are unnecessary for fault-free routing. Distributing fault infor-
mation to each and every node in a massively parallel proces-
sor is expensive. Also, routing algorithms that depend on
global fault information should have alternate schemes to
transmit fault status messages during the transition period—
the interval between the occurrence of a fault and the time at
which this fault is known globally. Therefore, we develop
fault-tolerant algorithms that can work with local fault infor-
mation.

®0

o o ° 00 g9
1 B
[“Tn CEn J&d)
LA
J NS)] Tas
3 a4
o———o— 4 Nl ® <
R
)) J
00— o . .
P, O O P,
° > o) 969

Fig. 1. Examples of f-rings and f-chains in a mesh. Faulty nodes are shown as
filled circles, and faulty links are not shown. There are three f-regions, and the
corresponding f-rings and f-chain are indicated by thick lines.

A fault set is a set of faulty nodes and links. A set F of faulty
nodes and links indicates a (rectangular) fault block, or f-region,
if there is a rectangle connecting various nodes of the mesh such
that a) the boundary of the rectangle has only fault-free nodes
and channels and b) the interior of the rectangle contains all and
only the components given by F. A fault set that includes a com-
ponent from one of the four boundaries—top and bottom rows,
left most and right most columns—of a 2D mesh denotes a rec-
tangular fault block, if the above definition is satisfied when the
mesh is extended with nonfaulty virtual rows and columns on all
four sides. Fig.1 indicates three rectangular fault blocks:
Fi1={(3,3),3,4), (4.3), 4, 1)), F={<(1, 1), (2, 1)>,«(1, 2),
(2,2)>}, and F3= {<(0, 4), (0, 5)>}.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 7, JULY 1995

We use the block-fault model, in which each fault belongs
to exactly one fault block. Under the block-fault model, the
complete set of faults in a 2D mesh is the union of multiple
fault blocks. For example, the complete fault set for the net-
work in Fig. 1 is F; U F, U F3.

It can be easily verified that, under the block fauit model,
each fault-free node has faulty links incident on it in at most
one dimension. Fault blocks that touch both row boundaries or
both column boundaries disconnect the network and, hence,
are not considered. If the network is disconnected, our results
can be applied to each of the connected subnetworks.

It is noteworthy that Chien and Kim also consider block
(convex in their terminology) faults in two- and higher-
dimensional meshes [8]. Their model does not effectively deal
with faults on the network boundary, however. For example, to
handle the faulty-link <(0, 4), (0, 5)> in Fig. 1, Chien and Kim
label all nodes in row O faulty. Our fault model treats such a
fault as rectangular and handles it without labeling other
working processors and links faulty.

B. Fault Rings and Fault Chains

Conceptually, fault regions may be considered as islands of
faults in a sea of communication channels and nodes. In the
same manner as a ship is navigated around an island, it should
be feasible to route a message around fault regions. For this
purpose, we use the concept of fault rings, denoted f-rings.

For each f-region in a network with faults, it is feasible to
connect the fault-free components around the region to form a
ring or chain. This is the fault ring, f-ring, for that region and
consists of the fault-free nodes and channels that are adjacent
(row-wise, column-wise, or diagonally) to one or more com-
ponents of the fault region. The f-ring of an f-region is of rec-
tangular shape. For example, the f-ring associated with the
f-region Fy in Fig. 1 has nodes (2, 2), (2, 3), (2, 4), (2, 5),
(3,5),4,5),(5,5),(5,4), (5.3),(5,2), 4,2), 3, 2) on its
boundary. Notice that a fault-free node is in the f-ring only if it
is at most two hops away from a faulty node. There can be
several fault rings, one for each f-region, in a network with
multiple faults. In a (k, n)-mesh, a link may be common to up
to n f-rings and a node common to up to 2n f-rings. A set of
fault rings are said to overlap if they share one or more links.
For example, the f-rings of Fy and F, in Fig. 1 overlap with
each other, since they share link <(2, 2), (2, 3)>.

Forming a fault-ring around an f-region is not possible when
the f-region touches one or more boundaries of the network
(e.g., F3 in Fig. 1). In this case, a fault chain, f-chain, rather
than an f-ring is formed around the f-region. There are four
basic types of fault chains that are formed when an f-region
touches exactly one of the (2D) network boundaries. The fault
chain of an f-region that touches more than one edge of the
network can be synthesized from these four basic f-chains. The
nodes at which an f-chain touches the network boundaries are
the end nodes of the f-chain. Since the links in an f-chain are
undirected, we can form a directed ring, which spans from one
end of the f-chain to the other end and then back.

An fring (respectively, f-chain) represents a two-lane
(respectively, one-lane) path to a message that needs to go

BOPPANA AND CHALASANI: FAULT-TOLERANT WORMHOLE ROUTING ALGORITHMS FOR MESH NETWORKS 851

Procedure Form-Fring()

West (SW) corner, and West. */

/* Comment: Creates an f-ring around an f-region.
Nodes on the f-ring are in one of the eight possible positions:
North West (NW) corner, North, North East (NE) corner, East, South East (SE) corner, South, South

1 Each node, if it has faulty neighbors in DIMq sends one message (with information on its faulty
neighbors) to each of its non-faulty neighbors in DIM;, and vice-versa.

2 Each node that has a faulty link incident or has received one or more fault status messages determines
its position on the f-ring based on the set of messages it received about the f-region and Table 1.

Fig. 2. An algorithm to form f-rings and f-chains in a 2D mesh.

TABLEI

NODE POSITIONS BASED ON STATUS MESSAGES FROM NEIGHBORS. LET x BE THE NODE WHOSE POSITION IS TO BE DETERMINED. Ny, Ey, Sy, AND W, DENOTE
THE NODES ADJACENT TO X IN THE NORTH, EAST, SOUTH, AND WEST DIRECTIONS, RESPECTIVELY

Node Position | Fault Status Messages Received

North z’s South link is down and one or both of the following occurred: 1. Ea's South
link is down, 2. W,’s South link is down.

NE Corner No faulty links are incident on = and one or both of the following occurred: 1.
W, 's South link is down, 2. S,’s West link is down.

East z’s West link is down and one or both of the following occurred: 1. N,'s West link
is down, 2. S;’s West link is down.

SE Corner No faulty links are incident on z and one or both of the following occurred: 1. N,’s
West link is down, 2. W,’s North link is down.

South z’s North link is down and one or both of the following occurred: 1. E,’s North
link is down, 2. W,’s North link is down.

SW Corner No faulty links are incident on z and one or both of the following occurred: 1. Ng's
East link is down, 2. E;’s North link is down.

West z’s East link is down and one or both of the following occurred: 1. N,'s Bast Link
is down, 2. S;’s East link is down.

NW Corner No faulty links are incident on z and one or both of the following occurred: 1. S,’s
East link is down, 2. E,’s South link is down.

through the f-region contained by the f-ring. Thus, an f-ring
simulates four paths to route messages in two dimensions. De-
pending on the size of the f-region, physical channels in an
f-ring may need to handle a large amount of traffic compared
to the other fault-free physical channels. Further, routing mes-
sages around one or more fault-rings creates additional pos-
sibilities for deadlocks. Hence, wormhole routing algorithms
must be designed to handle the additional congestion and
deadlocks caused by faults.

C. Formation of Fault Rings

We assume that nodes can test themselves using any one of
the many popular self-test techniques [23]. Each node moni-
tors the status of the links incident on it. When node x becomes
faulty, each of its neighbors concludes that the appropriate link
connecting itself and x is faulty. In the block fault model, each
node has faulty links in at most one dimension. Therefore, if a
node has faulty links in more than one dimension, it simply
stops sending status signals to its neighbors. This procedure is
iterated several times (bounded by the network diameter) until
no new nodes or links are set faulty. The net faults after this
process satisfy the block fault model.

First, let us consider a single fault region in a two-dimensional
mesh. The formation an f-ring around this f-region is a two-step
process as shown in Fig. 2. A node on an f-ring or f-chain, sends
up to two messages and receives up to two messages. For ex-

ample, for the f-region F in Fig. 1, node (3, 2) sends messages
to nodes (2, 2) and (4, 2) that its East link is down, and receives
a message from (4, 2) that (4, 2)’s East link is also down. Node
(2, 2) also receives a fault status message from (2, 3) that (2, 3)’s
South link is down. Node (2, 2) determines that (3, 3) is faulty
and that it is the NE corner node for the f-ring covering (3, 3).
Node (3, 2) concludes that it is a West node, since links <(3, 2),
(3, 3)> and <(4, 2), (4, 3)> are faulty.

Formation of f-chains is also done using the procedure for f-
rings. The difference is two nodes on the f-chain mark them-
selves as the end nodes. The other nodes on the f-chain need
not know this and may simply assume that they are on an f-
ring. In fact, our fault tolerant routing logic for nodes (other
than end nodes) on f-chains is the same as the one used for
nodes on f-rings. Only the end nodes of f-chain use an addi-
tional rule to route messages.

If multiple faults occur simuitanecusly, a node may
send/receive messages about multiple f-regions. There can be
at most two faulty links incident on a node even with multiple
f-regions. Hence, a node sends at most two messages to each
of its non-faulty neighbors, which are at most 2(n — 1). Thus a
node in a (k, n)-mesh may send up to 4(n — 1) messages to its
neighbors and receive up to 4n messages in the formation of f-
rings and f-chains. By fortifying the messages with information
on faulty link direction and dimension, it is feasible to separate
the messages on faults for different f-regions. Suppose the f-

852

rings for F; and F, in Fig. 1 are to be formed simultaneously.
Node (2, 3) may receive a fault status message from (2, 2) that
(2, 2)’s North link is down. Since (2, 3) knows that its North
link is up and did not receive any message from
(1, 3), it is the corner node for the f-ring covering the North
link of (2, 2). Now suppose that (2, 3) also detects that its
South link is faulty and receives a message that the South link
of (2, 4) is faulty at the same time it receives the fault status
message from (2, 2). Node (2, 3) can separate the messages
into two categories, since one set of messages inform about
North links and the second set about South links.

In summary, f-rings and f-chains are formed using only
near-neighbor communication among fault-free processors.
Hence, the transition period from the occurrence of a fault to
the formation of appropriate f-rings or f-chains is short. The
actual details of implementation are dependent on the design
of the OS and network interface, which are not addressed in
this paper.

The fault-tolerant wormhole routing techniques presented in
the next few sections use 1—4 additional virtual channels. The
additional virtual channels required by our techniques can be
used for routing messages in the absence of faults, to improve
performance. However, when faults occur, the messages using
these additional virtual channels on the fault ring, may have to
be first drained before the fault-tolerant routing algorithms
begin to operate. If these messages are not drained in a speci-
fied amount of time, they may have to be dropped from the
network. Similarly, messages that are currently in transit
through a faulty link or node should also be dropped from the
network. The sources of dropped messages retransmit the mes-
sages, if they do not receive the acknowledgement in a speci-
fied amount of time. This recovery process at the network
level should be integrated with other mechanisms, such as
checkpointing and roll-back recovery, which provide fault-
tolerance at the system level.

II. THE FAULT-TOLERANT e-CUBE ALGORITHM

The non-adaptive e-cube algorithm is the most commonly
implemented wormhole routing algorithm in the recent parallel
computers. Though it can achieve good network utilization for
uniform traffic [10], it cannot handle faults due to its nonadap-
tive nature.

For fault-free networks, e-cube requires one virtual channel
(per physical channel) for deadlock-free wormhole routing.
QOur fault-tolerant variant of the e-cube, called f-cube, uses one
extra virtual channel for 2D meshes to handle nonoverlapping
fault rings. The f-cube requires three extra virtual channels
(four channels overall), however, to handle cases where f-rings
and f-chains may occur and overlap with one another. First, we
describe the f-cube in the context of two-dimensional meshes.
The results for higher dimensional meshes are based on the
results for 2D meshes and are given later. We first present the
simpler case in which only nonoverlapping f-rings exist in the
network.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 7, JULY 1995

A. Routing Messages on Nonoverlapping f-Rings

In the following treatment, row hops correspond to hops in
dimension dy, and column hops correspond to dimension d;.
Row messages that travel from West to East (respectively, East
to West) are WE (respectively, EW) messages. NS messages
and SN messages are column messages that travel from North
to South and South to North, respectively. In the fault-free
e-cube, a message travels in a row until it is in the same col-
umn as the destination and then takes column hops.

DEFINITION 1 (E-cube hop). At any given time, the path speci-
fied by e-cube from the current host to the destination of the
message is called its e-cube path; the first hop in that path
is its e-cube hop from the current host node.

DEFINITION 2 (Message type). A message that has one or more
row hops remaining is called a row message. A message
that needs to travel only in a column to reach its destina-
tion is called a column message.

A row message may eventually take column hops, but be-
fore doing that it changes itself into a column message. A col-
umn message never changes its type in e-cube routing.

The f-cube routing algorithm uses two virtual channels, ¢,
and ¢, classes, to provide fault-tolerant deadlock-free routing
with e-cube algorithm as the base algorithm. We call this al-
gorithm two-channel f-cube, or f-cube2, to distinguish it from
the final version of the f~cube, which uses four virtual channels
and allows overlapping f-rings and f-chains.

A.l. The f-Cube2 Algorithm

The f-cube2 routing is governed by the set of rules given in
Fig. 3. Each node applies this algorithm on each message
passing through it. It is assumed that each node, knows the
status of the links incident on it, and its position in the f-ring if
any of its links is faulty.

Let M denote a message in the network. If the current host
of M is its destination, then M is consumed. Otherwise, proce-
dure Route-Message of Fig. 3 is used to determine the next
hop for the message. For this purpose, we use a message status
parameter which can be normal or misrouted. The criteria for
setting the status of a message is given by procedure Set-
Status in Fig. 3. The status parameter of a message indicates
whether the message is blocked by a fault and needs to travel
on the corresponding f-ring to reach its destination.

Each time a message’s label changes from normal to mis-
routed, its direction along the f-ring is set using the procedure
Set-Direction (Fig. 3); once a message’s direction is set
for the current f-ring, it stays the same throughout its journey
around that f-ring (Step 1 of Set-Direction). The direc-
tion of a misrouted message is reset to null when it becomes a
normal message. A misrouted NS (respectively, SN) message’s
direction is set to clockwise (respectively, counter-clockwise)
regardless of its current host, and is routed on an f-ring in the
clockwise (respectively, counter-clockwise) direction only
(Steps 2 and 3 in Set-Direction). For an EW message,
the direction is set to counter-clockwise (respectively, clock-
wise), if the destination is in a row above (respectively, below)
the current host; if the current host and destination are in the

BOPPANA AND CHALASANI: FAULT-TOLERANT WORMHOLE ROUTING ALGORITHMS FOR MESH NETWORKS 853

Procedure Set-Status(M)

If the next e-cube hop is not blocked by a fault,
then set the status of M to normal
and the direction of M to null.

Otherwise, set the status of M to misrouted
and Set-Direction(M).

Procedure Set-Direction(M)
/* Comment: The current host of M is (a1, o)
and its destination (by, bo). */

1 If direction of M is not null, return.
/* M is misrouted and had its direction set */
2 If M is NS, set direction to clockwise.
3 If M is SN, set direction to counter-clockwise.
4 If M is EW, set direction to
4.1 clockwise if (a1 < by),
4.2 counter-clockwise if (a; > by), or
4.3 either orientation if (a; = by).
5 If M is WE, set direction to
5.1 clockwise if (a1 > by),
5.2 counter-clockwise if (ay < by}, or
5.3 either orientation if (a; = b;).

Procedure Route-Message(M)

/¥ Comment: The current host of M is (a1, aq)
and its destination (b1, by). Row messages use cp
virtual channels and column messages use ¢y vir-
tual channels. */

0 If a; = by and a¢ = bo, consume M and return.

1 i M is a row (EW or WE) message and ap =
bo,
change its type to NS if a; < ¥; or SN if
ay > by,

2 Set-Status(M).

3 If M is normal, use the e-cube hop.

4 Otherwise, route M on the fault-ring in the
specified direction.

Fig. 3. Pseudocode of the f-cube2 algorithm.

same row, clockwise or counter-clockwise direction is chosen
randomly (Step 4). A similar rule is used for WE messages
(Step 5).

At each intermediate node, a message M is routed using the
procedure Route-Message(M). The use of channels of an f-
ring by row and column messages is illustrated in Fig. 4.

EXAMPLE. Let us consider the message WE from (1, 0) to
(4, 4) in a 6 X 6 mesh with fault set {(1, 2), <(3, 4), (4, 4)>}
(see Fig. 5)..Its normal e-cube path is

10> 1D—=>(1,2)>(1,3)>(1,4) > (2,4
— (3,4) >4, 4).

M is normal at (1, 0). However, it becomes misrouted at
(1, 1) since its e-cube hop from (1, 1) to (1, 2) is blocked by the
fault (1, 2). Since the destination (4, 4) is in a row below (1, 1),
M’s direction is set to counter-clockwise; M travels from (1, 1) to
(2, 1) as a misrouted message. At (2, 1), M’s e-cube path (from (2,

1) to (4, 4)) is not blocked by any fault and hence M becomes
normal again. M travels as a normal message from (2, 1) to (2, 4).
At (2, 4), M becomes a NS message, since it only needs hops in
the North-South direction. At (3, 4), M is blocked by the faulty link
<(3, 4), (4, 4)>, which forces M to become misrouted; hence, M
travels in the clockwise direction from (3, 4) to (4, 5). At (4, 5) M
becomes normal and travels to (4, 4). M reserves channels ¢, until
(2, 4) (since it is a WE message) and channel ¢, from (2, 4) on-
wards (since it becomes NS at (2, 4)).

W -->R B -->W
o0 <0
f-region f-region
0 c0
N -->8 8 --> N
f-reagion f-ragion
¢l et
Fig. 4. Usage of virtual channels in f-rings.
((‘;”) O- O o 0%
Co .
9 [)] .2 y
(&
C
5 2 LY W 4
@D 22 @3 24
O— < <
Ol
oO———O0———20

Fig. 5. Example of f-cube2 routing.

A.2. Proof of Deadlock-Free Routing on Nonoverlapping
[f-Rings

We now prove that f-cube2 provides deadlock free routing
of messages in 2D meshes with nonoverlapping f-rings.

LEMMA 1. The two-channel f-cube2 algorithm provides cor-
rect and livelock- and deadlock-free routing in 2D meshes
with any number of nonoverlapping f-rings.

PROOF. For a deadlock to occur, there has to be a cyclic depend-
ency on the virtual channels acquired by the messages in-
volved in the deadlock. Row messages may turn into column

854

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 7, JULY 1995

bl] » P 9 b= O J’h Oe Oe ©9
’_—‘] 1 ®aa) ®aa
a.9) o
s g - 50 (%)
U
N ot -, L, Oe
&% “9) ©9
(a) (b)
A 5 o 5 o Q& - < g o
B 3 SRS X
%an Y *en)
o 9]
EL“_&“"?‘““' — Tae K SEE. f"'"'"l?""'i# 50
| 1
: !
a 2 A .
Y - f
]
1 I
) P
K : By & > Cun
(c) (d)

Fig. 6. Example of acyclic directed graphs used by f-cube2 in a 6 x 6 mesh with one node and one link fault. Node (2, 2) and link <(3, 4), (3, S)> are faulty.
Vitual channels of class 0 are shown as solid directed edges, virtual channels of class 1 as dashed directed edges, and unused channels for a message type as
undirected edges. The channel graph in part (a) is used by West-to-East messages, part (b) by East-to-West messages, part (¢} by North-to-South messasges,
and part (d) by South-to-North messages.

messages after a few hops, but column messages never turn
into row messages. Since row messages use only class 0 vir-
tual channels and column messages use only class 1 virtual
channels, there cannot be a deadlock involving both classes of
virtual channels. Conceptually, the network may be consid-
ered a union of two planes, plane 0 with virtual channels of
class 0, and plane 1 with virtual channels of class 1. A mes-
sage may move from plane O to plane 1 but never in the op-
posite direction. Therefore, if there is a deadlock, then it is
among the channels of class O or class 1 only.

Class 0 channels are used by two types of row messages: mes-
sages going from West to East (WE) and those going from
East to West (EW). The WE messages use virtual channels of
class O only on West to East physical channels, and virtual
channels of class 0 on West columns of the f-rings in the net-
work. The EW messages use virtual channels of class O only
on East to West physical channels, and virtual channels of
class O on East columns of the f-rings in the network. There-
fore, they use disjoint sets of physical channels, and there
cannot be deadlocks among row messages.

There are two types of column messages: North-to-South

(NS), and South-to-North (SN). Each type uses two disjoint
sets of physical channels, since they are routed in opposite
directions on f-rings. Therefore, there cannot be deadlocks
among column messages.

(An example of the acyclic directed networks of virtual channels
used by the four types of messages is given in Fig. 6.)

To see that f-cube2 correctly routes messages without intro-
ducing livelocks in the faulty network observe that a) a mes-
sage is misrouted only around an f-ring, b) a message, once
it leaves an f-ring, will never revisit it, c) there are a finite
number of f-rings in the mesh, d) a normal message pro-
gresses towards its destination with each hop, and e) the
destination node is accessible, since all nonfaulty nodes are
connected. Since a message is misrouted only by a finite
number of hops on each f-ring and it never visits an f-ring
twice, the extent of misrouting is limited. This together with
the fact that each normal hop takes a message closer to the
destination proves that messages are correctly delivered and
livelocks do not occur. 0

One source of performance loss with the f-cube2 is the un-

balanced use of channels on f-rings by misrouted column mes-

BOPPANA AND CHALASANI: FAULT-TOLERANT WORMHOLE ROUTING ALGORITHMS FOR MESH NETWORKS

sages, which never use channels in the West columns of
f-rings. This can be avoided by allowing column messages to
choose the orientation such that the paths traversed on f-rings
are shortest paths. This effectively partitions the links of each
f-ring into two groups. Because of the shortest-path constraint,
each column message uses ¢ channels on the links from only
one of these groups for its traversal on an f-ring; therefore, the
routing is still deadlock free. However, since we assume only
local knowledge of faults, routing along a shortest path on the
f-ring may not be feasible except in one often-used case: iso-
lated node and link faults. Therefore, for isolated node and
link faults, f-cube2 can use either orientation to route blocked
column messages on f-rings without creating deadlocks.

B. Routing Messages on Overlapping f-Rings and f-Chains

When two frings overlap along a column (respectively,
row), some nodes in that column belong to the West
(respectively, North) boundary of one f-ring and to the East
(respectively, South) boundary of another f-ring. The proof of
Lemma 1 is based on the fact that EW messages only use the
East boundaries of f-rings and WE messages use only the West
boundaries of f-rings. However, when f-rings overlap, this
condition is no longer met, and the sets of physical channels
used by WE and EW messages are no longer disjoint. Since
both use class 0 virtual channels, additional constraints should
be placed on how row messages are routed in overlapping
f-rings to avoid deadlocks.

b

v

14

Fig. 7. Example of routing on an f-chain. The shaded area indicates an
f-region and dotted lines indicate the corresponding f-chain. The path of the
message after u-tum is indicated by a dashed line. The u-turn path overlaps
with the path taken on the f-chain from a to b before the u-turn.

Now, consider the issue of routing messages on f-chains.
Since we assume only local knowledge of faults, a message
may be routed by f-cube2 in the direction of the f-chain that
actually leads to a dead end. As an example, consider the
routing of a WE message, M, from s to d on the f-chain in
Fig. 7. When M touches the f-chain at node g, it is routed in
NE orientation, since d is in a row above a. As a result, M
reaches node b at one end of the f-chain; it needs to take a
u-turn and travel on the f-chain in the opposite direction to
reach the other side of the f-region. Finally when it reaches
node ¢ on the f-chain, the SE corner node, the message leaves
the f-chain and completes its journey using the e-cube algo-
rithm. A similar scenario may be constructed for EW mes-
sages. It is noteworthy that column messages are not blocked
by this type of f-region; only normal column messages travel
on this f-chain. When an f-region touches more than one

855

boundary of the network, even fewer types of misrouted mes-
sages encounter the f-chain. For example, the only misrouted
messages that travel on an f-chain of an f-region touching the
North and East boundaries of the network are WE misrouted
messages.

Dependencies that arise when f-rings and f-chains overlap
cause severe problems for deadlock free routing. Therefore, to
route messages on f-rings and f-chains in 2D meshes, we use
four virtual channels, one each for WE, EW, NS, and SN mes-
sage types. Let ¢, ¢y, ¢3, ¢; denote the virtual channel classes.
The modified routing algorithm is the four-channel f-cube or
f-cube4. The routing logic of f-cube4 are given in Fig. 8,

EXAMPLE. An example of f-cube4 routing is illustrated in Fig. 9.
The network has two overlapping frings and an
f-chain. The paths taken by two messages as per f-cubed are
shown in this figure. The first message is from node (3, 0) to (3,
4). It starts as a normal message and moves to (3, 1) at which
point it becomes a misrouted message. The message chooses
North orientation, and becomes normal at (1, 1) after two hops.
After three more hops—that is, at node
(1, 4y—it becomes a column message. As per the routing algo-
rithm, it attempts to reach (3, 4) via (1, 5) but hits a dead end.
The message takes a u-turn at this point, and reaches (3, 4). The
message takes c channels up to node (1, 4), and ¢, channels for
the rest of the journey. The second message is from (4, 3) to (1,
0); it uses ¢; up to (3, 0) and c; for the next two steps.

LEMMA 2. The four-channel f-cubed algorithm provides cor-
rect and livelock- and deadlock-free routing of messages in
2D meshes with any number of f-regions.

PROOF. First, we note that each type of message uses a disjoint
set of virtual channels. The dependencies across classes of
virtual channels are as follows. There are dependencies
from ¢, virtual channels to ¢, and c;, and from ¢y to ¢; and
¢3. Note that ¢, virtual channels do not depend on ¢, chan-
nels and vice versa. Similarly, ¢, virtual channels do not de-
pend on ¢; channels and vice versa. We also note that ¢, and
¢ never depend on ¢q or ¢ classes of virtual channels.
Since, there cannot be cycles involving two or more classes
of channels, it is sufficient to prove that there cannot be
deadlocks due to dependencies of channels of one particular
class only. We show this for WE messages, but similar ar-
guments can be constructed for other types of messages.
First, no WE message travels in the East-to-West direction
of the mesh (even the WE messages that take a u-turn can
do so only along a column). Thus, there cannot be a dead-
lock between WE messages waiting in distinct columns.
Thus, if there are cyclic dependencies among WE messages,
they can only be for channels in the same column. However,
for deadlocks to occur along a column, the following condi-
tion must be satisfied.

Condition 1. There must be two WE messages such that the
first (respectively, second) reserved a North-to-South
(respectively, South-to-North) channel and is waiting for a
South-to-North (respectively, North-to-South) channel.

WE messages traveling on overlapping f-rings do not take
any u-turns, since the orientation of the message alternates

856

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 7, JULY 1995

Virtual channel usage

Routing rule for normal messages

Routing rule for misrouted messages

In all cases, WE messages use cq virtual channels, EW messages ¢; virtual channels, NS messages
¢g virtual channels, and SN messages ¢3 virtual channels.

All messages are routed as per the e-cube algorithm.

If the current node is not an end node of the f-chain, then it is routed using the fcube2 algorithm
(see Section 3.1) with the following exception in choosing the direction of a column message:

If a blocked column message has not taken any row hops on the current f-ring prior to its blocking,
then it may be routed in either orientation. Otherwise, it is routed using the orientation such that
the current direction of travel on the row is continued.

Fault-chains. If a misrouted message hits one of the ends of an f-chain, and if its e-cube path

takea the message to its previous host or goes through the f-region, then ite direction is reversed
{from clockwise to counter clockwise and vice-versa) and routed as per fcube2 routing rules.

Fig. 8. Routing logic of the f-cube4 algorithm.

.0

04

G,0

o o
&0

69

Fig. 9. Hlustration of f~cube4 routing on f-rings and f-chains.

on successive f-rings; hence, messages traveling on over-
lapping f-rings cannot satisfy condition 1. A WE message
can take hops in both North-to-South and South-to-North
directions of a column, only if it was on an f-chain and took
a u-turn at an end node of the f-chain in that column. How-
ever, Condition 1 requires two such messages in the same
column, which is possible only if the West boundary of the
f-chain spans a complete column, that is, only if a complete
column of the mesh is faulty. If this occurs, the mesh is dis-
connected, which is a contradiction.

The proof of correct delivery and livelock-freedom is simi-
lar to the one given in Lemma 1. [l

IV. ADAPTIVE FAULT—TOLERANT ROUTING

We next present techniques using which any fully-adaptive
routing algorithm can tolerate multiple rectangular fault regions
in a 2D mesh, We distinguish between two distinct kinds of

fully-adaptive algorithms: strongly adaptive algorithms and
weakly adaptive algorithms. With a strongly adaptive algorithm,
a blocked message can wait, indefinitely, for any of the legal
links at an intermediate node; a link is termed legal if it takes the
message closer to its destination. With a weakly adaptive algo-
rithm, a blocked message can wait, indefinitely, for only a strict
subset of the legal links at an intermediate node. Weakly adap-
tive algorithms are based on the result by Duato [13]. Most
fully-adaptive algorithms proposed in literature are strongly
adaptive. In this section, we concentrate mainly on the strongly
adaptive routing algorithms. Henceforth, adaptive, fully-
adaptive, and strongly adaptive are used synonymously.

At an intermediate node x, a message bound to node d is
said to be affected by faults if there is no nonfaulty link con-
necting y such that the hop from x to y is along the shortest
path from x to d. If a message becomes affected at node x, then
it remains an affected message for the remainder of its journey.
A message not affected by faults is said to be normal. We use
the notion of affected rather than misrouted, since in f~cubed a
message may change its status from misrouted to normal and
back. Here a message that is blocked by a fault and needs to be
routed on the f-ring changes its status to affected permanently.

The following result forms the basis for the adaptive fault-
tolerant routing algorithms. It does not hold for weakly adap-
tive algorithms.

LEMMA 3. Consider a mesh with multiple f-regions (possibly
overlapping f-rings and f-chains) and a fully-adaptive
routing algorithm. A message with destination d is affected
at some node x if and only if the addresses of x and d differ
in exactly one dimension.

PROOF. Assume that the message M is affected at x and that x and
d differ in both dimensions. Under block fault model, a non-
faulty node can have faulty links in at most one dimension. If x
has no link faults, then a hop in either dimension will take M
closer to its destination. If x has one or both links in a dimension
faulty, then one of the links in the other dimension takes M
closer to its destination. In all cases, M can move closer to its
destination and cannot be affected. This contradicts the hy-
pothesis that M is affected at x. This proves the lemma. 0

BOPPANA AND CHALASANI: FAULT-TOLERANT WORMHOLE ROUTING ALGORITHMS FOR MESH NETWORKS

857

Procedure Fully-Adaptive-2D{M)

/* Comment: Uses a generic fully-adaptive algorithm F. Affected messages use one of the four additional
virtual channels depending on their types: co for 0% messages, ¢; for 0~ ges, c3 for 11

and c3 for 1~ messages. */

0 If the current host is the destination of M, consume it and return.

1 If M is normal and if its next hop as per F is not blocked by faults, then route M using F and return.
Otherwise, set M'’s status to affected and determine its type and free dimension.

2 If M has a legal hop, use it to route M and return.

for its travel on the f-ring.

return.

the next node.

3 3.1 If A has not taken any hops on this f-ring as an affected message, then choose either orientation
3.2 If the next node on the f-ring in the chosen orientation exists, then route M to that node and

3.3 /* The current node is an end node of an f-chain. */
Reverse the orientation (from clockwise to counter clockwise and vice-versa) of M and route it to

Fig. 10. Pseudocode of adaptive fault-tolerant routing in 2D meshes.

An affected message has only one minimal path and, hence,
is nonadaptive. The routing technique used by f-cube4 to route
column messages can be used to route affected messages in the
adaptive case. To show this, we define a few terms.

DEFINITION 3 (Affected and free dimensions). The dimension
in which an affected message needs to travel at the time it is
affected is its affected dimension, and the other dimension
is its free dimension.

DEFINITION 4 (Types of affected messages). Let DIM; be the
dimension of a message M affected at node x. If address of
x in dimi is less than that of its destination, then M isan i*
message. Otherwise it is an i” message.

There are four types of affected messages: 0,07,1% and 1"

DEFINITION 5 (Legal hop). If the addresses of the current host
and destination of a message match in its free dimension
and if the hop that takes the message closer to its destina-
tion is on a fault-free channel, then that hop is the legal hop
of the message at that position.

If an affected message does not have a legal hop, then it is on
an f-ring or f-chain. ,

The fault-tolerant version of a generic fully-adaptive algo-
rithm F (to be denoted by) uses four virtual channels—cy,
¢y, ¢ and c;—in addition to those used by F and routes mes-
sages using Procedure Fully-Adaptive-2D in Fig. 10. Each
message is routed by the base adaptive algorithm until the
message is affected by faults. The additional logic is used to
route affected messages only. The journey of an affected mes-
sage M to its destination is an alternating sequence of misrout-
ing hops on an f-ring and some (= 0) legal hops. When M
needs to go through an f-region to progress to its destination,
Rule 3 of Fully-Adaptive-2D transports M to the other side of
the f-region in a finite number of steps.

EXAMPLE. There are three f-rings and one f-chain in the mesh
of Fig. 11. The message from (1, 5) to (1, 4) is affected at
node (1, 5), and its type is set to 0. This message is sent to
North using ¢ to avoid the faulty link <(1, 5), (1, 4)>. Since
it has reached a dead end, its orientation is reversed and

routed without any further incident to its destination. An-
other message from (4, 0) to (0, 2) touches two f-ring but
slides around the fault because of adaptive routing using the
channels provided for adaptive routing. The third message
from (2, 4) to (5, 4) is affected at (3, 4) and is routed using
virtual channels ¢, (since it is a 1*-message).

.0 Gy PP @9
} f
C
! i
e ?) s
I
! G 14
| c,
. ¢ Y GRS o W
! 2.9 g @9
I
i
?._.___J\ O 2 Cz
@.2))
2
Q040 ®uy ® s
CZ
& o) Y
5,4 9

Fig. 11. Illustration of adaptive fauit-tolerant routing.

THEOREM 1. Assume that the fully-adaptive routing algorithm F
correctly routes messages and is deadlock-free for fault-free
2D meshes. The corresponding fault-tolerant fully-adaptive
routing algorithm J; described in procedure Fully-Adaptive-
2D, provides correct and livelock- and deadlock-free routing of
messages in the presence of multiple fault blocks.

PROOF. Algorithm F; correctly routes normal messages be-
tween any pair of nonfaulty nodes, since F correctly routes
messages. Since the virtual channels used for affected mes-
sages are different from those used for normal messages, the
statement is true for all normal messages. To complete the

858

proof, we need to show that affected messages are also
routed correctly without deadlocks and livelocks.

An affected message is routed without adaptivity in a plane
of appropriate class of virtual channels. With the exception
of its status, the routing of a message by [is the same as
the routing of a column message by the f-cube4. Hence, the
proof of deadlock and livelock freedom and correct delivery
can be constructed using the arguments of Lemma 2. O

A. Extensions

Fault-tolerant routing with two extra virtual channels.
Procedure Fully-Adaptive-2D is the adaptive variant of
f-cube4. It is feasible to devise a fault-tolerant adaptive scheme
with only two extra virtual channels if faults are such that only
nonoverlapping f-rings are formed. In this case, 0* and 0" mes-
sages share virtual channels of class ¢y, and 17 and 1™ share ¢,
virtual channels; ¢, and ¢; virtual channels are unused and
need not be provided. To avoid deadlocks, we need to ensure
one of the following: a) i ™ messages, i = 0, 1, use a orientation
different from that used by i ~ messages, or b) orientation on
each f-ring is chosen such that the hops in the free dimension
are minimized. Constraint b) is ensured for isolated node
faults. For larger fault blocks, the orientations used on f-rings
should be restricted.

Fault-tolerant routing with weakly adaptive algorithms.
In general, a weakly adaptive algorithm uses a deadlock-free
base algorithm (which can be either nonadaptive or adaptive)
and a few extra virtual channels, which can be used by mes-
sages for further adaptivity [13]). The advantage of weakly
adaptive algorithms is full adaptivity can be provided using
just one extra virtual channel. If its base algorithm is e-cube,
our techniques can be used to enhance the weakly adaptive
algorithm for fault-tolerant routing.

As an example, consider the following minimal, weakly
adaptive algorithm based on e-cube for 2D meshes. Two vir-
tual channels are used: one for e-cube algorithm and one for
adaptive routing. A message can use adaptive virtual channels
in all of its shortest paths to its destination at any time. In ad-
dition, a message can use the e-cube channel in the path speci-
fied by the e-cube algorithm. Before we discuss fault-tolerant
routing with this algorithm, we show a deadlock situation that
can occur with a weakly adaptive algorithm but not with a
strongly adaptive algorithm. Fig. 12 indicates one such situa-
tion in a mesh with multiple faults. It is noteworthy that each
and every message in the deadlock has at least one minimal
path to its destination, which could be used by the weakly
adaptive algorithm in the absence of other messages. This
situation cannot occur with a strongly adaptive algorithm,
since a message blocked due to congestion can wait for any
channel that would be suitable in the absence of congestion.

A simple method to make this weakly adaptive algorithm
fault-tolerant is to enhance the base algorithm, e-cube, into
f-cubed. Thus, five virtual channels are required for the corre-
sponding adaptive, fault-tolerant algorithm. At each hop, if a
message obtains a free channel (within a finite period of time),
it will be routed by the original weakly adaptive algorithm. If
the message is waiting for a channel and its e-cube hop is not

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 7, JULY 1995

available because of faults, then f-cube4 will be used for the
rest of its journey.

() DS
e o o o
D3 SU s S6 g)
™ 7] M
M5 MI
88 s2 o)
22
e M2
¢ Gl M o
[7Z] Mé . s3 D6
s4
L o
e & o- Ou 4

Fig. 12. Deadlock with a weakly adaptive algorithm. There are multiple link
faults, which give rise to four f-rings. Faulty links are not shown, undirected
lines indicate unused links, and directed lines indicate the physical channels
used by the six messages in the deadlock. Message Mi, 1 <i < 6, is from node
Si to node Di. Messages using adaptive channels are indicated to the left of
directed edges (outside the directed cycle) and messages using e-cube chan-
nels to the right.

V. SIMULATION RESULTS

To study the performance issues, we have developed a flit-
level simulator. This simulator can be used for wormhole routing
in k-ary n-cubes (meshes and tori) with and without faults. In this
section, we present simulation results for the performance of the
fault-tolerant f-cube2 and a fully-adaptive algorithm for the case
of nonoverlapping f-rings. The adaptive algorithm, described in
[25], [9], is strongly adaptive and requires 2" virtual channels
to provide deadlock-free routing in a (k, n)-mesh. Our fault-
tolerant version of it is denoted by LH2.

The virtual channels on a physical channel are demand
time-multiplexed. Only the virtual channels that have messages
to transmit use the physical channel in a round-robin manner
{101, [5]. Each virtual channel, upon receiving permission to
use the physical channel, transmits the next flit of its message
and yields the physical channel to the next virtual channel in
the queue. Idle virtual channels do not consume any band-
width. It takes one cycle to transmit a flit between neighbors.

We have simulated a 16 x 16 mesh, since radix 16 has been
used in many previous studies and in some recent multicom-
puters such as the Cray T3D [30]. Message length in flits is
dependent on the grain of communication and width of links.
We have used 20-flit messages, which could be suitable to
transmit four 64-bit words together with header, checksum and
other information when each link is 2-bytes wide as in Cray
T3D. We have used uniform traffic pattern, since it facilitates
comparison of results with other works (at least for the fault-
free case). Furthermore, there is no consensus on the type and
frequency of occurrence of nonuniform traffic that is represen-
tative of the traffic in the current parallel computers. Message
interarrival times are geometrically distributed.

BOPPANA AND CHALASANI: FAULT-TOLERANT WORMHOLE ROUTING ALGORITHMS FOR MESH NETWORKS 859

We use bisection utilization and average message latency as
the performance metrics. The bisection utilization (ps) is de-
fined as follows.

_ (Number of bisection messages delivered / cycle)* Message length
h Bisection bandwidth

Py

The bisection bandwidth is defined as the maximum number of
flits that can be transferred across the bisection in a cycle, and
is proportional to the number of nonfaulty links in the bisec-
tion of the network—for example, the row links connecting
nodes in the middle two columns of the 16 X 16 mesh. A mes-
sage is a bisection message if its source and destination are on
the opposite sides of the bisection of the fault-free mesh. The
average message latency is the average time from the injection
to consumption of a message.

Dally [10] has shown that providing more virtual channels
than those necessary for deadlock free routing improves the
performance of the e-cube considerably. Therefore, we have
used eight virtual channels per physical channel. For each re-
quired class, one virtual channel is provided. The extra virtual
channels are placed in a free pool. If a message is supposed to
use a virtual channel of class v for a hop and if that virtual
channel is busy, then the message takes any idle virtual chan-
nel from the free pool, relabels it as virtual channel of class v,
and uses it. A free pool virtual channel relinquished by a mes-
sage is returned to the free pool. A message that finds the vir-
tual channel of its class and all virtual channels in the free pool
busy simply waits for one cycle and retries. Since the number
of virtual channels for any class is at least one at all times,
deadlock-free routing is preserved.

For f-cube2, two virtual channels on each physical channel
are dedicated to implement ¢, and ¢, classes, required for
deadlock-free routing, and six virtual channels are placed in
the free pool. The fault-free version of the adaptive algorithm
requires two classes of virtual channels. We have used the
optimized fault-tolerant logic that uses only two extra virtual
channels: affected messages in each dimension use virtual
channels of a particular class without creating deadlocks
(Section IV.A). Therefore, for LH2, four virtual channels are
dedicated for deadlock-free fault-tolerant routing and the re-
maining four virtual channels are placed in the free pool. Fur-
thermore, we allowed either orientation to be used on f-rings
for both algorithms, since we simulated only isolated node and
link faults.

To facilitate simulations at and beyond the normal satura-
tion points for each routing algorithm, we have limited the
injection by each node. This injection limit is independent of
the message interarrival time; the motivation for injection
control is due to Lam and Reiser [21]. After some experimen-
tation, we set the injection limit to 3 for both algorithms.

A. Performance for Various Fault Cases

We have simulated a 16 x 16 mesh with 1%, 5%, and 10%
of the total network links faulty. Specifically, for the 1% case,
we have set, randomly, a node and link faulty; since four links
are incident on a node, five of the 480 links in the network are
faulty. For the 5% fault case, we have set four nodes and eight
links faulty; for the 10% fault case, we have set eight nodes

400

Ecube2 . 0p ~—)
350 | fcube2.ip —a—
fcube2 .S5p ~—
= 100 fcube2.10p ~w--
2
v 250
B
u
200
>
&
S 150
‘.d
~ 100
50
0 .
0 0.2 0.4 0.6 0.8 1
Offered Trafflc (fraction of capacity)
1 T
fcube2.0p ——
fcube2.1p =—
o feube2.5p ——
2 0-8 [feube2.10p ~=--
]
N
0.6
=0,
o e
8 =
g
G 0.4
+
[
Q
& 0.2
z 0.
0 N

0 0.2 0.4 0.6 0.8 1
Offered Traffic {fraction of capacity)

Fig. 13. Performance of the f-cube2 algorithm for uniform traffic in a 16 x 16
mesh with various faults. Extension dp indicates the d%-faults case.

400
LH2.0p —~—
LH2.1p —=—
350 LHZ.gp —-—
LH2.10p ~=— ’
3 300 /
T 250
B
u
T o200
kol
g
g 180 |
pel
3 100
50
0 .
0 0.2 0.4 0.6 0.8
Offered Traffic (fraction of capacity)
1 T
LH2 .0p ——
LH2.1p —»—
=1 LH2.5p -~
g 0.8 LH2.10p e
e
@
| T P o=
-
o] 0.6
=
5
I
Soar
)
o
o
w
2 0.2
0 N

0 0.2 0.4 0.6 0.8 1
offered Traffic (fraction of capaclty)

Fig. 14. Performance of the LH2 algorithm for uniform traffic in a 16 x 16
mesh with various faults. Extension dp indicates the d%-faults case.

and 16 links faulty. In each case, we have randomly generated
the required number of faulty nodes and links such that only
nonoverlapping f-rings are formed.

860

The results for f~cube2 and LH2 are given in Figs. 13 and
14. The fault sets used for both algorithms are the same for a
fault case. For each value reported, the simulation erro—half-
width of the 95% confidence interval of the value [19]—is less
than 5% of the value.

For the fault-free network, f~cube2 is very attractive, with
peak utilization 82%. Faults affect the performance of f-cube2
significantly. There is substantial decrease in utilization and
increase in latencies starting at 40% offered traffic load. This
can be explained as follows. There is heavy contention for
channels on each f-ring, which makes each f-ring a hotspot.
Because f-cube2 is nonadaptive, messages are unable to avoid
f-rings in their row paths. This reduces throughput and in-
creases latency even for normal messages which may be wait-
ing for the channels reserved by misrouted messages prior to
misrouting.

The fault-free performance of LH2 is slightly worse than that
of fcube2. The interesting point is that LH2 shows a graceful
degradation of performance in the presence of faults. Further-
more, the performance of LH2 under faults is comparable to its
fault-free performance for up to 60% load. Because LH2 is fully-
adaptive, the probability for a normal message to wait for an
affected message is small. Therefore, the hotspot effects ob-
served for f-cube2 are less severe for the LH2 algorithm.

B. Peak Performance

To evaluate different fault cases more thoroughly, we have
further simulated f-cube2 and LH2 for 1, S, and 10 percent
faults. For each case, we have simulated 10 different fault sets
at the injection rate that would cause 90% load on a fault-free
network. For each fault set of each fault case, we have sampled
100,000 delivered messages after the network reached its
steady state. The values obtained from the ten different fault
sets are averaged and shown in Fig. 15. The vertical bars indi-
cate the corresponding 95% confidence intervals. This graph
clearly shows that LH2 degrades more gracefully compared
f-cube2. For faulty networks, message latencies of LH2 are 18-
22% lower compared f-cube2. For quantitative comparisons let
us set the base utilization as 80% (achieved by f-cube2 at 90%
load) for both algorithms in the absence of faults. Network
utilization with f-cube2 is reduced by 21% for 1% faults and
by 34% for 10% faults. Thus even a single fault is likely to
cause substantial loss of performance for f-cube2. The effect of
additional faults is not that severe. On the other hand, LH2 is
more graceful exhibiting 6% degradation with 1% faults and
20% for 10% faults. (Comparing with its fault-free perform-
ance—78% utilization, LH2 gives 4% and 18% lower utiliza-
tions for 1% and 10% faults, respectively.) Also LH2 has
18-22% lower latencies compared to f-cube2, under faults.
Dally and Aoki [11] indicate an 18-19% decrease in utilization
with 8% faulty channels, when the dimension-reversal based
routing algorithm is used.

VI. FAULT-TOLERANT ROUTING
IN MULTIDIMENSIONAL MESHES

In this section, we apply our fault-tolerant routing tech-

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 7, JULY 1995

500
450
400

W
S o
o o

~
o
=3

Latency (cycles)
[o

w o]

o © o o

o

2 4 6 8 10
Percentage of Faults

=Y

<]
0 0.8
o CH
o ——
E \\I-LH—z—]
a4 0.6
)
B fcube2
=1
° 0.4
D
o
°
w
2 0.2
0 N
0 2 4 [8 10

Percentage cof Faults

Fig. 15. Peak performance of f~cube2 and LH2 algorithms for various fault
cases.

niques to multidimensional meshes using the results for 2D
meshes as the base cases. Given a (k, n)-mesh, n > 2, multiple
2D submeshes (planes) can be formed by removing links con-
necting neighbors in all but two selected dimensions. A plane
such as (0, 1) is formed from links in DIMy and DIM; and inter-
connects a set of & nodes whose addresses, in radix notation,
differ only in the two least significant components.

Fault model. To define the fault model precisely, we consider
n-tuples of k symbols {0, ..., k — 1}; we refer to this set as 2 and
these correspond to nodes in a (k, n)-mesh. We refer to n-tuples of
k+2 symbols {-1,0, ..., k—1,k} as @, A node x = (x4, ..., xp)
€ Q is a virtual node, if x; = —1, k for some i. A link <x, y> be-
tween nodes x and y is a virtual link iff at least one of x or y is vir-
tual. Every virtual node and link is assumed to be nonfaulty.

A node x = (x,), ..., Xo) is said to be a base-node with re-
spect to another node y = (¥,.1, ..., Yo) if and only if x; < y; for
all i; if x is a base node for y, y is said to be an apex-node for
x. A block B,, with base-node x and apex-node y contains all
the nodes in the set

Ny ={@w1, - 20 6 €£2<y, 0 i< (n~ 1)}

and every link that connects any two nodes in N,,. A node
2= (Zn1, ---» Z0) 18 s2id to be a boundary node of block B,, if
z;= x; or z; = y; for some i. A link <z, z'> is a boundary link iff
both z and z* are boundary nodes. The interior of B, contains
all nodes and links that are not on the boundary of B,,.

A set F of faulty nodes and links in a (k, n)-mesh is said to
be a faulty-block iff there exist a base-node x € @ and an
apex-node y € @ such that

BOPPANA AND CHALASANI: FAULT-TOLERANT WORMHOLE ROUTING ALGORITHMS FOR MESH NETWORKS 861

TABLE II
FREE DIMENSIONS AND VIRTUAL CHANNELS USED BY AFFECTED MESSAGES IN ADAPTIVE ROUTING IN A 3D MESH
Message Type | Free Dim. [| Planes of Routing | Virtual Channels
ot DIM; (0,1 co in both DIM, and DIM;
[DIM; 0,1 ¢, in both DIMy and DIM;
1+ DIM3 1,2 ¢y It both DIM; and DIM;
1~ DIM3y 1,2 cg in both DIM; and DIM
2F DIMg (2,0 ¢y in DIMp and cg in DIMz
2= DIM, (2,0) ¢3 In DIMg and c; in DIM2

Procedure Fully-Adaptive-3D(M)
/* Uses a generic fully-adaptive algorithm F
and four additional virtual channels ¢q, c1, c3, c3 */

Routing rules are the same as in Procedure Fully-Adaptive-2D (Figure 11) with one exception: free
dimensions and virtual channels used by affected messages are as given in Table 2.

Fig. 16. Routing logic for adaptive fault-tolerant routing in 3D meshes.

1) the interior of B, contains all and only the components of F,

2) no boundary node or link of B, is faulty, and

3) no k x k submesh of the (k, n)-mesh is disconnected by
faults, that is, a complete row or a complete column of
faulty nodes in a k£ x k submesh is not allowed in this
fault model.

A set F of faulty nodes and links in a (k, n)-mesh is a valid
block-fault if F can be written as the union of disjoint subsets
F, F,, ..., F, such that each F; is a faulty-block by itself. The
following observation is immediate from the definition of
faulty-blocks in nD meshes.

OBSERVATION 1. Let F be a block fault in (k, n)-mesh and let
Fy, ..., F, be the corresponding faulty blocks. If we consider
any k x k submesh H of the (k, n)-mesh, the faulty nodes of
F;, 1 <i<rform a rectangular fault region in H.

Observation 1 allows us to route in a (k, n)-mesh under
block-faults by routing a message successively in several 2D
meshes each with faulty-blocks of rectangular shapes. This
concept of routing successively in overlapping planes was used
by Chien and Kim [8] in designing the planar adaptive routing
(PAR) algorithm. By combining the PAR technique with our
algorithm f-cube4 for the 2D mesh (see Section IIL.B), we can
design an algorithm that tolerates any combination of fauity
blocks in an nD mesh using four virtual channels per physical
link. However, we do not present this algorithm, since it is
straightforward to combine the PAR technique and the f-cube4
algorithm.

A. Fault-Tolerant Fully-Adaptive Routing in nD Meshes

We now show that any strongly fully-adaptive routing al-
gorithm for a (k, n)-mesh can be made fault-tolerant by using
four additional virtual channels.

As in the two-dimensional case, we say that a message (with
destination d) is affected by faults at an intermediate node x if
there is no neighbor y such that link / = <x, y> is fault-free and
the hop on [is along a shortest path from x to d. The following
result is immediate from Observation 1 and Lemma 3.

LEMMA 4. Suppose that a message is being routed from s to d
in an n-dimensional mesh using a fully-adaptive routing al-
gorithm. Further, suppose that the mesh has multiple faulty
blocks. The message is affected at some node x if and only if
the addresses of x and d differ in exactly one dimension.

A message that needs to travel in DIM; when it is affected is
an i * message if its destination address is greater than that of
the current host or an i~ message otherwise.

The strategy for routing affected messages is as follows. For
each type of affected messages, 1) a suitable free dimension
and a set of virtual channels are specified and 2) Procedure
Fully-Adaptive-2D (Fig. 11) is used to route them in the plane
formed by their affected dimension and the allocated free
dimension.

To handle even and odd n, we first show how to route af-
fected messages in 3D meshes. There are six types of affected
messages, 0%, 1%, 2%, depending on the final dimension and
direction in which they need to travel. The planes and virtual
channels used to route affected messages are shown in Ta-
ble II. The logic for 3D adaptive fault-tolerant routing is
shown in Fig. 16.

LEMMA 5. Let T be a fully-adaptive algorithm that routes
messages correctly without livellocks and deadlocks in 3D
meshes. Then the procedure Fully-Adaptive-3D with F as
the base algorithm provides correct and livelock- and
deadlock-free routing of messages in 3D meshes with mul-
tiple faulty blocks.

PROOF. Since the fault-tolerant routing logic is used for af-
fected messages only, we need to show that all affected
messages are routed correctly and free of livelocks and
deadlocks. Take any affected message, say M of type 0.
The same argument applies with suitable modifications to
other message types.

From Observation 1, there is a path from the point at which M
is affected to its destination in a (0, 1) plane. Furthermore, ail
the faults within this plane are rectangular. Since Procedure

862

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 7, JULY 1995

Procedure Fully-Adaptive-nD(M)
/* Uses a generic fully-adaptive algorithm F
and four additional virtual channels ¢g, c1, ¢2, c3 */

2 If M is affected, determine its type.
Fully-Adaptive-3D algorithm.
DIM; 41 using Fully-Adaptive-2D algorithm.

DIM; - using Fully-Adaptive-2D algorithm.

1 Route M using algorithm F until M either reaches its destination or is affected by faults.

3 If (n is odd and i € {0,1,2}), route M in the 3D submesh formed by DIMg, DIM;, and DIM; using
Else if (both i n are even or both i and n are odd) route M in a 2D submesh formed by DIM; and

Else if (i is odd and n is even or i is even and # is odd) route M in a 2D submesh formed by DIM; and

Fig. 17. High-level description of adaptive fault-tolerant routing in nD meshes.

Fully-Adaptive-2D(M) is used to route this message in this
plane, correct and livelock-free delivery is guaranteed.

From Table 1I, it can be verified that the sets of virtual
channels used by various message types are pairwise dis-
joint. Therefore, deadlocks, if occur, should be among mes-
sages of a particular type. This is not feasible, since Fully-
Adaptive-2D provides deadlock free routing for each type
of messages when their virtual channels are not shared by
other types of messages. O

Fully-Adaptive-2D and Fully-Adaptive-3D algorithms are used
to provide adaptive fault-tolerant routing in nD meshes. A high-
level description of the nD algorithm is given in Fig. 17. The cor-
rectness, deadlock-, and livelock-free properties of Fully-
Adaptive-nD procedure follow from the corresponding proofs for
Fully-Adaptive-2D and Fully-Adaptive-3D procedures.

Recall that block-fault model defined for (k, n)-meshes as-
sumes that no k& X k submesh is disconnected by faults. The
Fully-Adaptive-nD algorithm can tolerate a more general type
of block faults, which are not tolerated by nonadaptive fault-
tolerant routing methods. If n is even, it is required that 2D
planes of type (2i, 2i + 1), 0 < i < n/2, are not disconnected; if
n is odd, it is required that 2D planes of type (0, 1), (1, 2),
(2,0)and (2 — 1, 2i), 2<i<(n - 1)/2, are not disconnected.

VII. CONCLUDING REMARKS

We have presented techniques to enhance deterministic and
fully-adaptive wormhole routing algorithms for fault-tolerant
routing on k-ary n-dimensional meshes. We have used the
block-fault model in which faulty processors and links are in
the form of multiple rectangular regions of the network. The
concept of fault-rings and fault-chains are used to route around
the fault-regions. Our algorithms are deadlock- and livelock-
free and correctly deliver messages between any pair of non-
faulty nodes in a connected component of the network even in
the presence of multiple faulty blocks and when some faulty
blocks contain boundary nodes and links of the network. The
contributions of this paper are e-cube based fault-tolerant
routing algorithms and methods to enhance any fully adaptive
algorithm using extra virtual channels.

The increase in routing-complexity to achieve fault-tolerant

wormhole routing is moderate. If a message is blocked by a
fault, it can be detected by checking the fault status of the ap-
propriate link. Based on this the status of a message can be
determined easily. The direction of a misrouted message is
determined by comparing a 2-tuple (of the current host) with
the 2-tuple of the destination in 2D meshes. The status of a
message and its direction on an f-ring can be maintained using
a few bits in its header. The complexity of these functions
scales linearly with the increase in the number of dimensions,
because our routing algorithms for n-dimensional meshes, in
turn, use the routing techniques developed for 2D meshes.
Further, each nonfaulty node can determine its position in an
f-ring or f-chain using a distributed algorithm based on ex-
changing messages with its neighbors.

We have simulated the fault-tolerant versions of the e-cube
and a fully-adaptive algorithm. Our simulation results indicate
that the deterministic e-cube algorithm suffers from increased
channel-contention along f-rings and performs poorly relative
to the fault-free case. However, it still achieves 53% utilization
with 10% faults. The fully-adaptive LH2 algorithm has better
performance under faults.

Table III presents a comparison of the existing work on fault-
tolerant wormhole routing and places the results presented in this
paper in proper perspective. The number of faults, p, that di-
mension reversal schemes [11] can tolerate depends on the
number of virtual channels, 7, used. Exact relationship between
prand r is unknown. For block faults, the dimension reversal
methods tolerate up to » — 1 blocks with channels in the worst
case. Thus, the virtual channel requirements of these schemes
grow linearly with the number of faulty blocks. The planar
adaptive routing developed by Chien and Kim [8] also toler-
ates multiple faulty blocks using only three virtual channels
per physical channel; however, when faulty blocks have
nodes on the network boundary, their schemes do not work
(or work by labeling a large number of nonfaulty nodes as
faulty). Our schemes use four virtual channels and tolerate any
combination of faulty blocks. Another contribution of this pa-
per is the technique to enhance any fully-adaptive routing al-
gorithm using four additional channels for tolerating any
combination of faulty blocks. Our results complement and
enhance the existing work in this area (Table III).

BOPPANA AND CHALASANI: FAULT-TOLERANT WORMHOLE ROUTING ALGORITHMS FOR MESH NETWORKS

863

TABLE III
A COMPARISON OF THE TECHNIQUES FOR FAULT-TOLERANT WORMHOLE ROUTING
Glass and Ni [Dally and Aoki | Chien and Kim [_’IThis paper
17 13 8]
Fault-model Arbitrary Arbitrary Block faults (f- | Block faults (frings
rings only) and f-chains)
Fault Knowledge Local Local Local Local
Routing Technique | Negative- Dimension rever- | Planar-adaptive | E-cube or any fully
first (partially | sal (adaptive) adaptive (FA)
adaptive)
Virtual channel | 1 r>2 3 4 for e-cube or 4 ex-
requirements tra for any FA
Faults tolerated Upto (n—~1)in | Exact num- | Multiple Multiple
nD meshes ber unknown, up | faulty blocks (f- | faulty blocks (f-rings
to r — 1 in the | rings only) and f-chains)
‘worst case
Our adaptive fault-tolerant routing methods are applicable REFERENCES

to strongly adaptive algorithms. However, they can be used to
provide fault-tolerant routing with the weakly adaptive algo-
rithms based on Duato’s theory [13]. We have shown how to
achieve this for an example weakly adaptive algorithm using
five virtual channels per physical channel. It may be possible
to integrate Duato’s adaptive routing techniques and the tech-
niques proposed in this paper to provide adaptive, fault-
tolerant routing with four or fewer virtual channels. We are
currently working on this problem.

Though we have not considered k-ary n-cubes (n-dimensional
tori), our techniques can be extended with suitable modifications
to k-ary n-cubes [6]. Performance evaluation of these techniques
for various routing algorithms on multi-dimensional tori is a
topic for future research.

The concept of fault rings and fault chains can be extended
to faults of arbitrary shape. In such cases, the fault rings are
not rectangular. Using the concept of fault rings and chains,
one arbitrary shaped fault of any size can be tolerated in a 2D
mesh. The results presented here appear to be applicable to the
case where there are multiple arbitrarily-shaped connected
faults and each fault region can be inscribed in a rectangle on
the mesh (n-dimensional box on an n-dimensional mesh) with-
out including faults from other connected regions. Further
work in this direction is needed.

AKNOWLEDGMENTS

R.V. Boppana’s research was partially supported by Na-
tional Science Foundation Grant CCR-9208784. S. Chalasani’s
research was partially supported by a grant from the Graduate
School of the University of Wisconsin-Madison and National
Science Foundation grants CCR-9308966 and ECS-9216308.

1] A. Agarwal, D. Chaiken, G. D’Souza, K. Johnson, D. Kranz, J. Kubia-
towicz, K. Kurihara, B.-H. Lim, G. Maa, D. Nassbaum, M. Parkin, and
D. Yeung, “The MIT Alewife machine: A large-scale distributed-
memory multiprocessor,” Proc. Workshop on Scalable Shared Memory
Multij essors, Kluwer Academic Publishers, 1991.

[2] L.N. Bhuyan and D.P. Agrawal, “Generalized hypercube and hyperbus
structures for a computer network,” IEEE Trans. Computers, vol. 33,
no. 4, 1984,

[3] K. Bolding and L. Snyder, “Overview of fault handling for the chaos
router,” Proc. 1991 IEEE Int’l Workshop Defect and Fault Tolerance in
VLSI Systems, pp. 124-127, 1991.

[4] R.V. Boppana and S. Chalasani, “A comparison of adaptive wormhole
routing algorithms,” Proc. 20th Ann. Int’l Symp. Computer Architec-
ture, pp. 351-360, May 1993.

[5]1 S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H.T. Kung, M. Lam,
B. Moore, C. Peterson, J. Pieper, L. Rankin, P.S. Tseng, J. Sutton,
J. Ubranski, and J. Webb, “iWarp: An integrated solution to high-speed
parallel computing,” Proc. Supercomputing 88, pp. 330-339, 1988.

[6] S. Chalasani and R.V. Boppana, “Fault-tolerant wormhole routing in
tori,” Proc. Eighth ACM Int’l Conf. Supercomputing, July 1994,

[71 M.-S. Chen and K. Shin, “Dept-first search approach for fault-tolerant
routing in hypercube multicomputers,” IEEE Trans. Parallel and Dis-
tributed Systems, vol. 1, pp. 152-159, Apr. 1990.

[8] A.A. Chien and J.H. Kim, “Planar-adaptive routing: Low-cost adaptive
networks for multiprocessors,” Proc. 19th Ann. Int’l Symp. Computer
Architecture, pp. 268-277, 1992.

[9] W.J. Dally, “Network and processor architecture for message-driven
computers,” VLSI and Parallel Computation, R. Suaya and G.
Birtwislte, eds., ch. 3, pp. 140-222. San Mateo, Calif.: Morgan-
Kaufman Publishers, Inc., 1990.

[10] W.J. Dally, “Virtual-channel flow control,” IEEE Trans. Parallel and
Distributed Systems, vol. 3, pp. 194-205, Mar. 1992,

[11] W.J. Dally and H. Acki, “Deadlock-free adaptive routing in multicom-
puter networks using virtual channels,” /EEE Trans. Parallel and Dis-
tributed Systems, vol. 4, pp. 466475, Apr. 1993.

[12] W.J. Dally and C.L. Seitz, “Deadlock-free message routing in multi-
processor interconnection networks,” IEEE Trans. Computers, vol. 36,
no. 5, pp. 547-553, 1987.

[13] 3. Duato, “A new theory of deadlock-free adaptive routing in wormhole
networks,” IEEE Trans. Parallel and Distributed Systems, vol. 4,
pp- 1,320-1,331, Dec. 1993.

[14] S.A. Felperin, L. Gravano, G.D. Pifarré, and J.L. Sanz, “Routing tech-
niques for massively parallel communication,” Proc. IEEE, vol. 79,
no. 4, pp. 488--503, 1991,

{15] P.T. Gaughan and S. Yalamanchili, “Pipelined circuit-switching: A
fault-tolerant variant of wormhole routing,” Proc. Fourth IEEE Symp.
Parallel and Distributed Processing, pp. 148-155, 1992.

864

[16] C.J. Glass and L.M. Ni, “The turn model for adaptive routing,” Proc.
19th Ann. Int’l Symp. Computer Architecture, pp. 278-287, 1992.

[17] C.J. Glass and L.M. Ni, “Fault-tolerant wormhole routing in meshes,”
23rd Ann. Int’l Symp. Fault-Tolerant Computing, pp. 240-249, 1993,

{18] K.D. Gunther, “Prevention of deadlocks in packet-switched data trans-
port systems,” IEEE Trans. Communications, vol. 29, pp. 512-524,
Apr. 1981,

{19] R. Jain, The Art of Computer Systems Performance Analysis. John
Wiley & Sons, Inc., 1991.

[20] P. Kermani and L. Kleinrock, “Virtual cut-through: A new computer
communication switching technique,” Computer Networks, vol. 3,
pp. 267-286, 1979.

[21] S.S. Lam and M. Reiser, “Congestion control of store-and-forward
networks by input buffer limits—An analysis,” IEEE Trans. Communi-
cations, vol. 27, pp. 127-133, Jan. 1979.

[22] T. Lee and J. Hayes, “A fault-tolerant communication scheme for hyper-
cube computers,” IEEE Trans. Computers, vol. 41, pp. 1,242-1,256,
Oct. 1992.

[23] R. Leveugle, T. Michel, and G. Saucier, “Design of microprocessors
with built-in on-line test,” 20th Ann. Int'l Symp. Fault-Tolerant Com-
puting, pp. 450456, 1990.

[24] S.L. Lillevik, “The Touchstone 30 Gigaflop DELTA prototype,” Sixth
Distributed Memory Computing Conf., pp. 671-677, 1991.

[25) D.H. Linder and J.C. Harden, “An adaptive and fault tolerant wormhole
routing strategy for k-ary n-cubes,” IEEE Trans. Computers, vol. 40,
no. 1, pp. 2-12, 1991.

[26] N.F. Maxemchuk and R. Krishnan, “A comparison of linear and mesh
topologies—DQDB and the Manhattan Street network,” [EEE J. Se-
lected Areas in Communications, vol. 11, pp. 1,278-1,289, Oct. 1993.

[27] M.D. Noakes, D.A. Wallach, W.J. Dally, “The J-machine multicom-
puter: An architectural evaluation,” Proc. 20th Ann. Int’l Symp. Com-
puter Architecture, pp. 224-235, May 1993.

{28] A.L. Narasimha Reddy and R. Freitas, “Fault tolerance of adaptive
routing algorithms in multicomputers,” Proc. Fourth IEEE Symp.
Parallel and Distributed Processing, pp. 156-161, 1992.

[29] J.Y. Ngai and C.L. Seitz, “A framework for adaptive routing in multi-
computer networks,” Proc. First Symp. on Parallel Algorithms and Ar-
chitectures, pp. 1-9, 1989.

[30] W. Oed, “The Cray Research massively parallel processor system,
CRAY T3D,” Technical Report, Cray Research Inc., Nov. 1993.

[31] M. Peercy and P. Banerjee, “Distributed algorithms for shortest-path
deadlock-free routing and broadcasting in arbitrarily faulty hypercubes,”
20th Ann. Int’t Symp. Fault-Tolerant Computing, pp. 218-225, 1990.

[32] C.S. Raghavendra, P.-J. Yang, and S.-B. Tien, “Free dimensions—an
effective approach to achieving fault tolerance in hypercubes,” 22nd
Ann. Int’l Symp. Fault-Tolergnt Computing, pp. 170-177, 1992.

[33] C. Seitz, “Concurrent architectures,” VLSI and Parallel Computation,
R. Suaya and G. Birtwislte, eds., ch. 1, pp. 1-84, San Mateo, Calif.:
Morgan-Kaufman Publishers, Inc., 1990.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 7, JULY 1995

Rajendra V. Boppana received the BTech degree
in electronics and cc ications engineering from
Mysore University, India, in 1983, the MTech de-
gree in computer technology from the Indian Insti-
tute of Technology, Delhi, in 1985, and the PhD
degree in computer engineering from the University
of Southern California in 1991. Since 1991 he has
been a faculty member in computer science at the
University of Texas at San Antonio. His research
interests are in parallel computer systems, perform-
ance evaluation, computer networks, and fault-
tolerant computing systems.

Suresh Chalasani received the BTech degree in
electronics and communications engineering from
JN.T. University, Hyderabad, India, in 1984, the
ME degree in automation from the Indian Institute
of Science, Bangalore, in 1986, and the PhD degree
in computer engineering from the University of
Southern California in 1991. He is currently an
assistant professor of electrical and computer engi-
neering at the University of Wisconsin-Madison. His
research interests include parallel architectures,
parallel algorithms, and fault-tolerant systems.

