ILEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 9, SEPTEMBER 1991

1057

On Self-Routing in Bene$ and Shuffle-Exchange Networks

C.S. Raghavendra and Rajendra V. Boppana

Abstract—In this paper, we present self-routing algorithms for realizing
the class of linear permutations in various multistage networks such as
Benes, 2n-stage shuffle-exchange, etc. Linear permutations are useful in
providing fast access of data arrays. In the first half of the network,
switches are set by comparing the destination tags at their inputs, and, in
the second half, switches are set using the Omega self-routing algorithm.
We show that the comparison operations can be implemented in bit-
serial networks without loss of time. In contrast, with the well-known
Benes network self-routing algorithm of Nassimi and Sahni (10), switches
are set by giving priority to the destination tag at the upper input to
them. Their algorithm routes many useful permutations but the class of
linear permutations. The previously known techniques to realize linear
permutations in multistage networks are not of the seif-routing type.
Hence, the algorithms presented are extremely useful in providing fast
access of various data patterns using interconnection networks cheaper
than crossbars.

Index Terms-——Bene$ network, interconnection networks, linear permu-
tations, self-routing algorithms, shuffle-exchange networks.

I. INTRODUCTION

Typically, a parallel processor consists of a number of processors
and an interconnection network for exchange of information among
them as well as with memory units. In a processor—memory network
model, any processor should be able to communicate with any
memory unit, which is called full access. To kecp the communication
step overhead minimum, parallel algorithms are often designed with
permutation (one-to-one) type data transfers. To support SIMD type
computations, ideally one would like the network to be able to per-
form all the permutations that allow simultaneous use of the memory
units. If the underlying network cannot support a required permutation
function, then it has to be realized in multiple passes through it. To
avoid this, crossbar networks or networks that are rearrangeable, for
example, the Bene§ network, can be used as interconnection networks.
The advantages with rearrangeable networks are any permutation can
be realized in one pass through the networks. and, if they are built
using smaller switches such as 2 x 2 switches, then they are cheaper
than crossbar networks. Therefore, rearrangeable networks are used
in some parallel computer implementations (e.g., GF-11 [1]).

A well-known rearrangeable network is the Bene§ network [2].
which is built in a recursive manner using 2 x 2 switches. (An
8 x 8 Bene§ network constructed recursively from two 4 x 4 Bene§
networks is shown in Fig. 1.) In such networks, it takes some time
to set up the switches to realize a given arbittary permutation. For
an N x NN = 2", Bene§ network B,, determining the switch
settings, to realize an arbitrary permutation, takes O(n.:V) time on
a uniprocessor computer [17]. Parallel algorithms to determine the
switch settings require O(nz) or O(n4) time using, respectively, a
completely interconnected computer or a shuffle-exchange computer
[11]. Therefore, if the required permutations change frequently during
a computation, the communication time may become the bottleneck.

Manuscript received September 12, 1988: revised July 13, 1990. This
work was supported by the NSF Presidential Young Investigator Award
MIP 8452003, DARPA/ARO Contract DAAG 29-84-k-0066, ONKR Contract
N00014-86-k-06062.

The authors are with the Department of EE-Systems. University of
Southern California, Los Angeles, CA 90089.

IEEE Log Number 9042300.

0018-9340/91/0900-1057801.00 © 1991 IEEE

1058
0
= 2
N 3T
P P
v .
T 45
S EIS
6
Fig. 1. An 8 x & Bene§ network, B3. The dashed boxes indicate 4 x 4

Bene$ networks.

Often, the above methods, which can realize arbitrary permutations
in Bene§ network, are unusable for the following reasons. The time
to set up the network is large compared to the propagation delay
of the network, which is O(n). Since the status of each switch is
decided elsewhere, for example, at a centralized network controller,
and transmitted to the switches, excessive hardware costs and time
delays arc encountercd with thcse methods. Also, these methods do
not facilitate pipelining of data movement—desirable in reducing the
overhead of communication by overlapping it with computations—in
interconnection networks. Finally, due to the nature of techniques
used in developing parallel algorithms, the permutations required are
generally nice and regular and can be expressed as algebraic functions
(8] This motivates us to develop fast self-routing algorithms— which
route permutations by setting up switches on-the-fly using only local
information (source and destination information of the messages
present) at each switch—for many useful permutations required in
parallel processing, if not for all the V! permutations.

Nassimi and Sahni [10] developed a self-routing algorithm to pass
the class of the bit-permute-complement permutations in the Benes
network. Their algorithm aiso routes the Lenfant’s FUB families
[8], which are shown to occur in the execution of various parallel
algorithms by Lenfant. Yew and Lawrie [18] adapted the Nassimi
and Sahni’s Bene$ network routing algorithm to realize bit-permute-
complement permutations in 2n-stage shuffle-exchange network,], .
Recently, Nassimi gave a generalized self-routing algorithm to realize
bit-permute-complement permutations in a class of (2n — 1)-stage
networks (9]. However, none of these methods realizes the linear
class of permutations, which are useful in the parallel access of data
arrays [4].

In this paper, we develop self-routing algorithms for routing the lin-
ear class of permutations on various interconnection networks. These
algorithms are simpie and route many other classes of permutations as
well. Our algorithms differ from those of Nassimi and Sahni [10] and
Yew and Lawrie (18] in giving priority to route messages, when there
is contention for the output links of a switch. Our algorithms give
priority, based on some type of comparison operation, to the smaller
of the two whereas their algorithms give priority to the message at
upper input line of the switch. We consider Benes, H, and (2n — 1)-
stage Shufflc-Exchange nctworks. Our results include simple routing
algorithms for the classes of linear (we extend this class with
complements of bits), Omega, and inverse Omega permutations on
these networks. For other permutations one can use a general looping
type algorithm or break the original permutation into multiple simpler
permutations.

II. PRELIMINARIES

lnterconnection Nerworks: We consider N x N. N = 2" with
n > 2, Benes, [], and (2n — 1)-stage Shuffle-Exchange networks

IEEE TRANSACTIONS ON COMPUTERS, VOL. 40. NO. 9. SEPTEMBER 1991

constructed of 2 x 2 crossbars (switches). These networks may be
used for processor-to-processor or processor-to-memory interconnec-
tions. The 2n-stage Shuffle-Exchange network, [],, is a cascade of
two copies of Lawrie’s Omega network {!2,), the n-stage Shuffie-
Exchange network. ([, is shown in Fig. 2.) The (2n — 1)-stage
shuffle-exchange network is theoretically interesting due to the long
standing conjecture about its rearrangeability {16].

The input ports, also the output ports. of a network are numbered

0.---..V =1, top to bottom. The stages of a network of k stages are
numbered. from left to right, 0.---. & — 1. Switch (i.j) is the jth
switch, numbered top to bottom 0. - - -. - ~ 1. in ith stage. Addresses

of lines within a network are assigned as follows. An input line to a
switch in stage 0 has the same address as that of the network input port
to which it is connected. If the upper and lower input lines of a switch
are indexed a and b, respectively, then its upper and lower output
lines are also indexed a and b, respectively. Interconnection patterns
do not affect the addresses of lines. This numbering is illustrated in
Fig. 2 for [],.

The multistage networks we consider share a property. In a stage,
addresses of inputs to each switch differ in exactly one common
bit, called the connecting bit; the upper line address is smaller
compared to the lower line address. For 55,,. connecting bits for stages

0.---.n—2.n.--.2n — 2 are, respectively, 0.---.n — 2. n— 1,
n ~2..--.0. And, for a k stage shuffle exchange network, the
connecting bits are n — 1.- -+ . n —k (mod n), for stages. respectively,
0o k- 1.

Notation: Each input (respectively, output) line is given a unique
and distinct index x, 0 < » < .V, which may be represented in binary
form as x,— - - - .ro with x,,_, being the most significant bit (MSB).
However, it is treated as an n-bit column vector (rg. -« . 2pn—y) r (the
superscript T indicates the matrix transpose operation) in the Boolean
matrix-vector computations. Similarly, given an n-bit column vector
(Yo, . yn—y)’, its value is computed as Z,”:_OI yi2'. Given a
Boolean matrix () = (gi;),,, the matrix-vector product Qi is
the n-bit vector given below. Here * =" indicates modulo 2 addition
of bits.

L0GO.0 T P10 n—1

LPOQn—1.0"" " I 1Yn—1.n—i

If the columns of () are represented as ¢o. .-, then () =
(gov "+ -gn-1) and Qr = rgoqo = -+
indicates the multiplication of each component of ¢, with the scalar
xi, and x;¢; — r;q; indicates componentwise module 2 addition of
the vectors x,;¢; and x,g¢;.

Linear permutations: Let V' = {0.1.---..V — 1}. A linear permu-
tation on V' is a permutation that maps each .+ € 1" to some y € 1’
such that each bit in the binary form of y is a linear combination of
the bits of r. (Addition of bits is modulo 2.)

Definition]: A permutation on V" is said to be linear {13], if there
exists an n X n binary matrix () such that. for every .» € 17, its image
y is given by the following equation

Tu—1qn—1. Here. riq,

y=Qur. (1)

Note that (0 is nonsingular by definition. If each bit of y is a
linear combination of the bits of r and constant 1. then the resulting
permutation is a linear-complement permutation. Formally, this is
defined as follows.

Definition 2: A permutation on 1~ is a linear-complement permu-
tation, if there exists an n x n binary matrix () and an n-bit column
vector ¢ such that, for every » € 17, its image y IS given by the

|EEE TRANSACTIONS ON COMPUTERS, VOL. 40, NO. 9. SEPTEMBER 1991

1159

5-stage 8 ¥ ¥ Shuffie-Exchange network

N

-

e

Fig. 2. A 6 stage 8 x 8 Shuffle-Exchange network. Numbers within a switch, shown only for stage 0, indicate its number in that stage. Numbers on
the lines represent their addresses.

following equation.

y=Qr=c (2)

In the literature (3], [6], linear permutations are termed as the
nonsinguiar lincar transformations of the n-dimensional vector space
over the field G F(2)—the field consisting of two elements: 0 and 1.

The Boolean matrix € in (2) is the important parameter of a linear-
complement permutation. Any two linear-complement permutations
with the same “(Q” have similar properties. Given any 71, 72 € LCa,
77" € LCn, and the composed permutation (right to left) momi €
LCn.

If () is a nonsingular lower (respectively, upper) triangular matrix.
then the corresponding permutation is called a lower (respectively,
upper) triangular linear-complement permutation or simply a lower
(respectively, upper) triangular linear permutation, for ¢ = 0. If a
permutation matrix—a nonsingular matrix with exactly one 1 in
each row and column—is chosen as @ in (2), then the resulting
linear-complement permutation is also a bit-permute-complement
permutation [10]. For any .\ = 2", n > 2. the class of bit-
permute-complement permutations (BPC,) is a special subclass
of the class of linear-complement permutations (LC,). There are
n! N and 2"/ (2' — 1) permutations in BPCp and £C.,
respectively: for N = 8, |[BPC3| = 18 and |£C3| = 1344, where
| X| is the cardinality of set X.

Definition 3: The class of permutations passable by Omega net-
work is called the Omega class. And the class of inverse Omega
passable permutations is called the inverse Omega class.

Lawrie [7] and Pease [13] characterized these two classes of
permutations; a permutation is in Omega or inverse Omega class
if and only if each bit of a tag (y) is a function of the bits of its input
line (&) given by (3) or (4), respectively. Both these classes contain
lower and upper triangular linear-complement permutations.

Sfilyn—ne s Yirra L Lo N<i<n 3)
0<i<n (4)

Yi =y

i =0 5 filyn—r Yo Enoat i)

Here. f,’s are arbitrary Boolean functions.

[1I. THE SELF-ROUTING ALGORITHMS

In permutation routing, each input of the network has the address
of a unique and distinct output line, called the destination address or,
simply, the tag. With a self-routing control algorithm, each switch in
the interconnection network uses the tags at its inputs and sets itself
appropriately using some simple logic.

The well-known bit-controlled (variously called. Omega. Delta, or
digit-controlled) self-routing algorithm routes a tag as follows. If the
ith bit is the connecting bit for a stage, then the ith bit of the tag,
called routing bit, is used for routing it through that stage: it is routed
to the upper (lower) output line of the switch. if the routing bit is
0 (1).

When the routing bits of both the tags at a swiich are the same,
there exists a conflict in setting up the switch since both of them
specify the same output line. Some important permutations which
exhibit switch conflicts are the bit reversal. shuffle. etc. Even though
these permutations can be realized by Bene$ and shuffle-exchange
networks with at least 2n — 1 stages, the simple bit-controiled
algorithm cannot route them. Therefore, to route such permutations
in Benes or other networks, the above algorithm has to be modified
suitably by giving priority to one of the input lines in setting up a
switch whenever there is conflict.

Nassimi and Sahni [10] proposed to resolve such conflicts by giving
priority to the upper input line: that is, whenever there is a conflict
in setting up a switch, the tag at the upper input line is routed to the
output line specified by its routing bit and the tag at the lower input
line is routed to the remaining output line. Their method is simple.
vet very powerful: it can realize the important classes of bit-permute-
complement permutations, inverse Omega permutations, and many
others. However, the class of linear-complement permutations cannot
be realized by their method.

Pease [13] showed that a given linear permutation can be realized
in two passes through the indirect binary n-cube network (identical
to inverse Omega network [12]), by decomposing it into two simpler
permutations, each of which is realized by the network in a single
pass. However, this is not a self-routing method, since it involves
the factorization of the Boolean matrix () corresponding to the linear
permutation. Etzion and Lempel {5] describe a method to pass linear
permutations in (2n — 1)-stage Shuffle-Exchange networks, but it is
not of self-routing type and takes ()(n")) time to set up the network.

Given below are simple methods to pass linear-complement per-
mutations in Bene$ and Shuffle-Exchange networks. They are quite
powerful and realize many other permutations as well.

A. An Algorithm for the Benes Network

Algorithm BL: For the first (n — 1) stages of 53,,, switches are set
up such that input line with smaller destination tag value is routed
according to its routing bit. For the next n stages. switches are set
up using the standard Omega seif-routing algorithm. |

This algorithm is different from that of Nassimi and Sahni [10]. In
case of conflict in setting up a switch. their algorithm gives priority

1060

w/ 1110 mi 100
ULl 1011 100 011
(a) (bh)

Fig. 3. An example showing switch settings done by Algorithm BL.
y } v }
000rY 000 WO(L_L ‘\OW 000
> T i i
5> 0
L2 *n H : ¢
N 3 3T
® gy g l 5
U 001 001 1 U
T4 T
S5 53
[6
T 7
Stage 0 1 2 3 4
Fig. 4. Routing a linear permutation in B3 using Algorithm BL.

0 0

1 1
{2 2 ?
N3 T
P P
I{' -
f s %
S5 3 g

8 6

Rsx X 1)t 1 |
Stage 0 1 2 3 4

Fig. 5. The example linear permutation is incorrectly routed by Nassimi and
Sahni’s algorithm.

to the tag at the top input line, whereas Algorithm BL gives priority
to the smaller tag.

A couple of examples of switch settings etfected by Algorithm
BL arc shown in Fig. 3. For each switch, the destination tags at its
inputs are shown, in binary form, and the routing bit is indicated by
an arrow. In Fig. 3(a), the routing bit is 1 for both the tags; so there
is a conflict in setting up the switch. This is resolved by comparing
the destination tags and giving priority to the tag with smaller valuc,
which, in this case, is at the lower input. The other tag is routed to
the remaining output fine. In Fig. 3(b), since the routing bits for two
the tags are different each tag is routed according to its routing bit.

A complete example of this routing scheme is illustrated, using the
linear permutation given by (5), in Fig. 4. Destination tags for each
input line to a switch are given in the binary form. The routing bit for
each stage is indicated by a downward arrow. Nassimi and Sahni’s
algorithm does not route this permutation. (See Fig. 5. Output ports
with incorrect tags are marked with an asterisk.)

Yo 0 1 1 £
nl=10 01 2y). (5
Y2 100 £

In stage 0, the routing bit is the same for both tags to a switch. Each
switch in this stage is set up to route the smaller tag; for example,
switch (0.2) routes tag 011 to its lower output line as specified by
the tag’s Oth bit.

IEFF TRANSACTIONS ON COMPUTERS. VOL.). NO. 9. SEPTEMBER 199]

Due to its recursive construction. stages 1. 2. and 3 of b;
can be partitioned into top and bottom 4 x 4 Bene$ networks,
Bs’s. (See Fig. 1.) The input addresses for these top and bottom
Bs’s are, respectively, {0.2.4.6} and {1.3.5.7}. Notice that, after
routing through stage O, there exists a linear-complement permutation
between yz. yi of destination tags and »». ., of input lines for both
the top and bottom 5,’s given by equations, respectively, (6) and

.
7001 £y
()= () ()
Y2 1 Rt}
ny _ (01 £ 0

C)=Goe) G o
There exists conflict in setting up switches in stage 1 of the network
as well. Switches 0 and 3 are set up such that the smaller tags, which
are at the upper inputs, are routed. correctly: the other iwo swilches
are set such that the smaller tags, which are at the lower inputs, are

routed, correctly. Switches in the last three stages are set up without
conflicts.

= -

B. An Algorithm for the 2n-Stage Shuffle-Exchange Network

Algorithm PL: For the first n stages of [],, switches are set up
such that the destination tag with smaller value. when compared after
bit reversal of the destination tags of both the inputs to the switch,
is routed according to its routing bit. For the next n stages, switches
are set up using the standard (2 seif-routing aigorithm. =

The working of Algorithm PL is illustrated, using the example
linear permutation given by (5), in Fig. 6. Routing bit at each stage
is indicated by a downward arrow. This permutation is not realized
by the [], self-routing algorithm of Yew and Lawrie {18]. Consider
the tags 100 and 111 at switch (0,1) in Fig. 6. They compete for
the lower output line; since 100 is smaller, the switch is set route
it correctly. For switch (0, 3), tag 110 (with bits reversed, has value
011) wins over tag 101 (with bits reversed. has value 101) and. hence,
it is routed according to its routing bit (to the lower output line).

C. An Analysis of Algorithms BL and PL

First, we prove some results common to Algorithms BL and PL.

Consider a column (stage) of .N/2 switches of size 2 x 2 with the
ith bit as the routing bit; the upper input line to a switch has /th
bit 0. At each input, there is a message with a destination address
(tag). The rclation between input line addresses and their tags is
given by some permutation, f € LC,. Then. f~' is a lincar-
complement permutation giving the relation between the tags and
input line addresses; it is expressed by a set of linear equations with
each bit of r (line address) expressed as a linear combination of its
u (tag) bits and the constant 1. if it is to be complemented.

Property 1: For any © € L, let mt.r) denote the destination tag
ofany r € 1". Then, forany a € V. 5(r)and w(.r - o) differ in a bit
if and only if, for all ' € V', m{2") and =+’ *) differ in that bit.

For example, each pair of tags at the inputs of any switch, in the
column described above, differ in the same bit positions. This can be
readily shown using (2).

Let j be some bit position in which the destination tags to a switch
differ. (If the destination tags to a switch differ in many bit positions,
J could be any one of them.) Now. suppose the tags are routed through
the column of switches using the following rule.

Routing rule: The destination tag with (0 as its jth bit is routed to
the upper (respectively, lower) output line of the switch. if its ith bit
is O (respectively, 1); the other tag is routed to the remaining output
line.]

{EEE TRANSACTIONS ON COMPUTERS. VOL. 40, NO. 9. SLFTEMBER 1991

1061

e T

w0

3 4 5

Fig. 6. Routing the example linear permutation in I1; using Algorithm PL.

After routing, let g denote the relation from the line addresses
1o their corresponding tags, after routing. We prove the following
results about g.

Lemma 1: The relation from line addresses to tags, after routing,
is a linear-complement permutation.

Proof: It is clear that this relation, g, is a permutation. To prove
the lemma. it is sufficient to show that ¢~', the permutation from
tags to output line addresses, is a linear-complement permutation.

Depending upon how a switch is set, the line address at which
the tag is present after routing is different from that before routing
in at most one bit, namely, bit i. Therefore, irrespective of how the
switches are set. the rth bit equation, 0 < r < n and r # i, of gt
is the same as that of f™'.

We need to show that x; also is a linear combination of y-bits.
There are two cases to consider.

Case 1 (no conflict): ith bits of the destination tags to a switch
differ. Then the effect of routing is such that tags match their line
addresses in bit /. That is, z; = y,.

Case 2 (conflict): ith bits of the destination tags to a switch are
the same. Then, the tag with O in its jth bit is routed to the output
line that matches it in the ith bit, and the other tag (whose jth bit is
1) is routed to the other output line, which does not match it in the
/th bit. That is. «, = ¢, = y;.

In either case. the bit equation ot r; is as follows.

ri= Yoo Ay (&)

where A = 0 (for the “no conflict” case) or 1 (for the “conflict”
case). a

As an example consider the routing of the example linear permu-
tation, (5), by Algorithm BL (same as the routing rule with i and
/ being, respectively, 0 and 2) through stage 0 of 5. (See Fig. 4.)

Here. f~' and ¢~ ' are given by, respectively, (9) and (10). Notice
1

that ¢~ ' is different from f~' in only the bit equation for .ry.
L'y 0 0 1 7]
riy=1110 "N &)
ro 010 Y2
ry 1 01 Yo
al=11 10w (10)
L2 0 1 0 Y2

Lemma 2: Any two tags that differ in the /th bit only are routed
such that one of them goes to the upper output line of some switch
and the other goes to the lower output line of some switch.

Proof: Clearly, for the “no conflict” case, the lemma holds. We
prove the validity of the lemma for the other case. by contradiction.

Let two tags s and ¢, which differ only in bit i. be routed to some
two upper output lines. (The following argument is essentially the
same when s and t are both routed to lower output lines.)

Any tag y routed to an upper output line satisfies the identity:
y, Fyi =z = 0.

Since s and t are routed to upper output lines. s; s, =1, -t = 0.
Noting that s; = t;, we get s; = f,, a contradiction. n

Let B = {n—1.---.0} be the set of all bit positions, and
B, = {n—1.---.0}\{i}, the set of all bit positions except the bit
position /. Also, let the relation from the set ot line addresses with
ith bit equal to 0 (respectively, 1) to their tags considering the bits
in B, be denoted go (respectively, ¢,). Then. yo and g, are said to
be subrelations of g, when it is partitioned on bit /. In Lemma 3, we
show that go, g1 are indeed some permutations in £C . and, hence,
subpermutations of ¢, which is in £C.. For the above example, g is
partitioned on bit 0 into go and g, given by, respectively, (6) and (7).

Lemma 3: The relations gy and ¢; are some permutations in
Ecnﬁl .

Proof: From Lemma 2. any two tags routed to the upper lines
differ in one or more bits other than the /ith bit and, hence, are
distinct considering only the bits in B,. So 4o is a permutation.
Therefore, g1 also is a permutation. To complete the proof. we show
that go ' gy € LCrno.

From Lemma 1. after routing, the ith bit equation of ¢~ is
rio= g = Ay;, where A € {0.1} [(8)]. The rth bit equation of
g7' 0 < r < noand r # i. can be rewritten by substituting the
occurrences of y;, if any, with », - \y,.

The rth bit equation of 4, ' (g} is obtained from that of y~' by
replacing any occurrence of x;. which is a constant for the set of line
addresses of this permutation, with its value—0 for the set of upper
line addresses and 1 for the set of lower line addresses. That is. each
bit equation of g, ' (g; ') is free of x, and y.. []

Observation 1: When expressed in the form of (2), yo and g1 arc
given by the same (n — 1) x (n — 1) Boolean matrix. although they
might differ in the “~” vector.

Corollary 2: Suppose a linear-complement permutation is to be
routed through some k, 1 < % < »n. stages of switches according
to the above routing rule using a distinct routing bit 7, in stage p.
1 <p <k

a) At any stage p, it is possible to select the "/ bit of the above
routing rule, bit j, in stage p. such that j, & {ii.--.i b (I
p =1, then {/;.--- ./, } is the empty set.)

b) The relation from line addresses to tags after any stage p is a
linear-complement permutation. Furthermore. it can be partitioned on

bits i1.- ./, into 2¥ subpermutations. each in £C,—p.
Proof: Both parts can be proved by induction using Lemma 3.
for k = 1. as the basis. a

All the results proved sc far can be applied to Algorithms BL and
PL due to the following claim.

Claim 4: a) The routing specified by Algorithm BL. in any of the
first n — 1 stages of 5. in realizing a linear-complement permutation

1062

is the same as that given by the rule using the most significant bit
(MSB), in which the tags to a switch differ, to decide the priority
of an input line.

b) The routing specified by Algorithm PL, in any of the first n
stages of [],, in realizing a linear-complement permutation is the
same as that given by the rule using the least significant bit (LSB), in
which the tags to a switch differ, to decide the priority of an input line.

Proof is trivial.

Theorem 1: Algorithm BL routes any permutation of £Cr in B,.

Proof: Induction is used. It is trivially true for n = 1, since 5 is
a 2 x 2 switch. For induction hypothesis, assume that any permutation
in £Cpm, i < n, is realized correctly by Algorithm BL in a 5,,,.

Consider the routing of a permutation f € LC. by Algorithm
BL in B,. After routing through stage 0, the permutation g at the
outputs of stage 0 switches can be partitioned on the Oth bit (the
routing bit) into two subpermutations go, g1 € £Cn—1. (Lemma 3.)
Due to the inverse shuffle connection between stages 0 and 1, go
and ¢, appear at the inputs of, respectively, the top and bottom
subnetworks B,_,’s, which comprise the stages 1.---.2n — 3 of
B,. These subpermutations are correctly realized by Algorithm BL,
in B,_:’s, by induction hypothesis. That is, after routing through
stage (2n — 3), tags match their line addresses in bits n — 1.---. 1.

At the inputs of switches in stage (2n — 2), the last stage: the
tags at a switch differ in only in the Oth bit, LSB, since the input line
addresses to a switch differ only in LSB and each tag matches its line
address in bits n — 1.---. 1. Hence, the switches in stage (2n — 2)
can be set such that each tag is routed to the correct destination. M

We now prove that Algorithm PL realizes lincar-complement
permutations correctly in J| networks.

Lemma 5: After routing a permutation in £C, through the first
n stages of [, using Algorithm PL, the relation between the line
addresses and the tags is a lower triangular linear permutation.

Proof: First, we note that the relation between line addresses
and tags after routing through a stage is some linear-complement
permutation. (Corollary 2.) Let f, denote the linear-complement
permutation from line addresses to tags after routing through stage ¢,
00 <i < n. We show that ,;11 (hence, f,—1) is a lower triangular
linear permutation.

From Lemmas 1 and 3, after routing through stage 1, 0 </ < n—1,
the equation of bit n — 1 — / for permutation f ' is of the form
Fnelei = UYn—1— = An—i—:yj, where \,_1—; € {0.1} and
j < n—1-1i(due to the comparison with bits reversed); furthermore,
it is not changed later, since a bit equation in the permutation from
tags to line addresses does not change, if that bit is not used for
routing, and. of course, the ith bit is not used for routing again in the
first half of [], . After routing through stage (n — 2), the two tags at
lines with addresses x and x -= 1, for any & € V', differ in the Oth
bit, the only bit not yet used for routing. [Corollary 2a).] Since the
tags at lines .+ and xr = 1 meet at a switch in stage (n — 1), it can
be set up without a conflict. Therefore, after routing through stage
{n — 1), each tag matches its line address in the Oth bit. In summary,
£, is of the following form.

Enot = Ynot = An—t Yy Jn-1 <n—1
: (11)
=y Ay Ji1 <1
Yo = Yo

It is clcar that the above sct of equations definc a lincar permutation
with Boolean matrix in the lower triangular form.]

For the routing of the example linear permutation of (5), the
permutation from line addresses to tags after stage 2 of [[5, “f. 1",

IEEE TRANSACTIONS ON COMPUTERS. VOL. 40. NO. 9. SEPTEMBER 1991

is as follows. (See Fig. 6.)

Yo 1 0 0 Ly
Ui = 0 1 () €
Y2 1 01 o

Theorem 2: Algorithm PL routes any permutation of £C, in [], .
Proof: From Lemma 5, after the first n stages of routing by
Algorithm PL, the resuiting permutation is some lower triangular
linear permutation, which can be routed in ¢1,, formed by the
remaining n-stages of], . [|

Remarks:

1) Proof of Lemma 3 is very instructive in showing the effect of
routing a linear-complement permutation by Algorithm PL in Q2,,. The
effect of applying Algorithm BL to route a linear-complement per-
mutation in Q! is similar, except that the permutation from outputs
to tags is an upper triangular linear permutation. (This can be shown
readily by mimicking the proof of Lemma 5.) Thus, Algorithms BL
and PL route linear-complement permutations by factorizing them
into two simpler permutations, automatically. Lemma 5 shows the
form of the “second” permutation, for the case of Algorithm PL.
The “first” permutation is more complicated than the second one
and is routed in the first half of the network. (This indeed is the
approach discussed by Pease [13], although his treatment is not
suitable for efficient routing.) Furthermore, after routing a given
linear-complement permutation in 27! (using Algorithm BL) or €2,
(using Algorithm PL), the second permutation to be realized is simple
enough 1o be realized by, for example, one of Steinberg’s lower
or upper triangular networks [15] or the second half of Waksman’s
network [17] (also, see Section IV-A).

2) Noting that B, is simply ;! followed by 2, with the last
stage of ;! identified with the first stage of {2,,, an alternate proof
for Theorem | can be given.

3) The effect of giving priority to the tag with larger value does
not effect the correct routing of a linear-complement permutation
by Algorithms BL and PL. However, the second permutation to be
passed by the second half of the network is either an upper or a lower
triangular linear-complement permutation. Now, the routing through
a stage is described with the modified form of (8) of Lemma 1:
£yo= Yoo ’\,UJ ol A

4) If the bit used for resolving contlicts is already used in one of
the earlier stages as routing bit, then the second permutation is neither
an upper nor a lower triangular linear-complement permutation, but
some linear-complement permutation simple enough to be passed by
2, or Q' correctly. This can be observed. e.g., for Algorithm PL.
by removing the restriction that j; < /.0 < { < 0 —1, in (11).
Note that vy = yo is still true for this second permutation but, to
show it, Corollary 2 has to be proved without the restriction that
Jp & {i1.---.ip=1}. It is readily shown by noting that the linear
equations defining a permutation are independent.

The drawbacks of choosing an already used routing bit for conflict
resolution are: a) the second permutation is slightly more complicated
and b) it precludes on-the-flv switch setting for bit-serial networks
(see Section IV-C).

IV. OTIHER APPLICATIONS OF ALGORITHMS BL AND PL

A. Routing Linear-Complement Permutations in Waksman's Network

Waksman's network. }V,, is simply a 5, with some switches
(% — 1. to be precise) permanently set straight (hence. removed).
this network is shown bv Waksman to be rearrangeable with (asymp-
totically) the minimum number switches [17]. W, is obtained from

IEEE TRANSACTIONS ON COMPUTERS, VOL. 40. NO. 9, SEPTEMBER 1991

B, by setting the switches, given below, straight.
{switch(n + lt.-zf“j) [0<i<n-20<j< N/Q‘“}.

For example, W; is obtained from B3 by setting the switches {(3, 0),
(3,2), (4,0)} straight permanently.

Theorem 3: Algorithm BL routes linear-complement permutations
in W,. :

Proof: First, we investigate the setting of switches in B, by
Algorithm BL.

It is easily seen that tags with value 0 and 1 go to, respectively,
upper and lower B,_1’s after routing through state 0. So, routing
is completed with switch (2n — 2.0) set straight. Since the subper-
mutations to be routed in the top and bottom B, _;’s are in LCr—1
(Theorem 1), the above argument can be recursively applied. So, the
very switches always set straight by Algorithm BL in routing linear-
complement permutations in B, are the ones permanently set straight

in W,. n

B. An Algorithm for the (2n ~ 1)-stage Shuffle-Exchange Network

Algorithm PL routes any = € L£Cn in J[with all the switches
in the last stage are set straight, because wo = yo after the first n
stages of routing [(11)]. See, for an example, Fig. 6. Therefore, we
need only a (2n — 1)-stage Shuffle-Exchange network followed by a
perfect shuffle pattern (o) to realize linear-complement permutations
by Algorithm PL. Therefore, if we apply Algorithm PL to route 7 in
(2n — 1)-stage Shuffle-Exchange network, we actually route, o ',
correctly, but not 7. (Composition of permutations is right to left.)

For correct routing of 7 in (2n — 1)-stage Shuffle-Exchange net-
work, we modify Algorithm PL to treat destination tags as if a shuffie
was performed on them; i.e., y: is treated as ¥;41(mod n). With this
modification, Algorithm PL actually attempts to route 7’ = o7. And
(c7'x") is routed correctly, by Algorithm PL after (2n — 1) stages
of Shuffle-Exchange. But, o7 'n’ = ¢ " 'ow = 7.

Thevrem 4. With the above modification, Algorithm PL routes any
permutation of £C,, in the (2n — 1)-stage Shuffle-Exchange network.

Remark: The addresses of output lines of switches in the last stage
of the (2n — 1)-stage Shuffle-Exchange network do not match the
network output port addresses. (This problem does not arise for B,
and J],.) A perfect shuffle is required to match the output port
addresses with the line addresses. This missing shuffle is compensated
by treating the tags suitably. In general, if this “mismatch” is some
f € BPC,, then tags are processed with f before routing. If bit-
controlled routing techniques are to be used, then f cannot be any
other permutation.

C. Efficient Implementation of Algorithms BL and PL

Implementation of Algorithms BL and PL requires that the switches
in the first half of the interconnection networks should be capable of
comparing the tags. For the other half, since it is set using the Omega
self-routing algorithm, extremely fast implementation techniques are
known. In what follows, we discuss fast and efficient techniques for
implementing the routing in the first half of the networks.

For word-parallel networks—each line of the network can carry
one word at a time, this comparison operation represents additional
time and hardware. However, with the current VLSI technology,
comparison of two 32-bit words can be fast and, hence, the time
penalty need not be severe. Since, with 32 bits, more than 4 billion
lines can be indexed distinctly, for aimost all networks of practical
size, the routing overhead is manageablc.

In bit-serial networks—each line in the network can carry one bit
at a time, Algorithms BL and PL as stated appear inefficient, since
switches in stage ¢, 1 < i < n — 1, need (n — () tag bits from the

1063

previous stage to set themselves. However, the following observation
allows an efficient implementation of the algorithms with switches
set on-the-fly. Thus, the switch setup times are similar to those with,
for example, Nassimi and Sahni’s algorithm [10].

Consider the effect of routing 7 € £C,, by Algorithm PL in £2,,.
If there is a conflict in setting up switches in stage ¢, then y; _,_,,
where j,_1-; < n—1~—1i and is the LSB in which the two tags at a
switch differ, is used to decide the priority [(11)]. However, y,, where
p < n—1—1i and is the MSB in which the two tags at a switch differ,
could have been used for conflict resolution. (Of course, it is possible
that p = jn—1~.:.) Even then, after routing through the first half, the
second permutation to be passed through the second half of [], is
still a lower triangular lincar pcrmutation, albeit a diffcrent onc.

A similar observation holds for Algorithm BL. (Here, “pth bit”
corresponds to the LSB not yet used for routing and the two tags at a
switch differ in that bit.) Note that these modifications do not affect
the results about the algorithms, proved earlier.

We organize tags as follows. For Bene$ network, the actual
tag consists of a (2n — 1)-bit-stream sent through the network in
sequence 0.---.n—2, n~1, n—2.-+-.0. (Message bits follow the
tag bits.) For], , the tag consists of a 2n-bit-stream sent through
the network in sequence (left torighty n —1.---.0, n —1.--- . 0. At
each input of the network, a tag organized as above followed by its
message is fed, onc bit at a time.

A switch in stage i, 0 < i < n, of the network operates as follows.
The first bit received is used as the routing bit. It examines the routing
bits of its tags and removes them from their respective streams of
bits. The remaining bits are sent to the next stage after setting itself
as follows. It sets itself appropriately in the absence of conflicts and
passes all the remaining bits it receives.

If there is a conflict, it sets itself straight or cross, depending on
whether the routing bit value is 0 or 1, and send the incoming bit-
streams to the outputs until they differ in a bit. (This is the “pth bit” of
the above discussion.) If the bit at the upper input is 0, then the setting
of the switch is not disturbed; otherwise, it is toggled—changed from
cross to straight or vice versa. This bit and the following bits are sent
to the switches in the next stage.

In the case of conflict, it does not matter how the switch is set,
as long as both the incoming bits are the same. Once the streams
differ in a bit, it can be set correctly. And conflict resolution is
patterned after the above discussion. Hence, this implementation
routes linear-complement permutations correctly.

D. Routing in Multistage Nerworks with Larger Size Switches

Algorithms BL and PL can be suitably modified to route linear-
complement permutations in Benes and [networks constructed from
R x K switches, k' = 2* for & > 1. When \ is not an integral
power of A, switches in the middle stages can be of smaller size.
An 8 x 8 Bene§ network with 4 x 1 switches in the first and the
last stages is shown in Fig. 7. We briefly sketch the modifications
to the Algorithm BL, below. Similar modifications are applicable to
Algonthm PL.

To set a I’ x K, a group of k bits. which together form the
routing digit, is used. In stage i, 0 < @ < |log, (N)], bits
(i+ 1)k ~ 1.---.ik are used to form the routing digit. Conflicts
in setting up a switch are resolved as follows. Apply the tags of a
A x I switch to an Qy, Q;l, or some similar network made up
of 2 x 2 switches with routing bits that form the routing digit of
the switch; for conflict resolution, if necessary, complete tag may
be used. (For a switch in the first stage of the network in Fig. 7,
the network shown within it could be used with tag bits 0.1 for
routing.) Route the tags by applying Algorithm BL or PL, whichever
is appropriate, in this network. Now set the A" x A" switch such that

1064

0 0
1 1
12 2 9
N3 T
{’_ P
L ‘ + U
S5 ,i} 53
6 ——*‘.u 6
-1 | Lo
[- —L_f i

Fig. 7. A B; with 4 x 4 switches in the first and last stages. The network
within a switch in the first stage is used to determine its setting.

it simulates the routing specified by this A° x A network built with
2 x 2 switches. There will not be any conflicts in routing through the
remaining stages of the network.

V. CONCLUSIONS

In this paper. we have presented algorithms to route linear-
complement permutations in Benes, [], and (2n — 1) stage Shuffle
Exchange networks. The feature introduced by the algorithms is:
when there are conflicts in setting up a switch, one of the tags is
given priority based on some type of comparison operation. When
there are no conflicts in setting up a switch, the routing is similar to
the Omega self-routing algorithm. These algorithms can be efficiently
implemented in bit-serial networks. For word-parallel networks, the
overhead of comparison operation is reasonable for networks with,
say up to 4 billion inputs and outputs.

Algorithm BL realizes the class of inverse Omega permutations in
Benes networks, since there will not be any conflicts in setting up the
swilches. Similarly, Algorithm PL realizes any {2 permutation in 2n-
stage Shuffle-Exchange networks. In fact, the classes of permutations
realized by these algorithms are much larger than the linear class. It
1s interesting to note that Algorithm BL routes all permutations in
B3;. However, it does not route all Omega permutations in larger size
Benes networks. If a permutation is known to be in Omega class, then
it can be realized in a Benes network by setting the first (n — 1) stages
of the nctwork straight, as suggested by Nassimi and Sahni [10].

Using the analysis techniques presented, we have shown that the
following classes of permutations are realized by Algorithm BL on
5, [14]. Similar results are shown for Algorithm PL. To pass these
permutations, conflict resolution should be as given for the case of
bit-serial networks.

1) Any permutation of the form wv, where v is an Omega admis-
sible upper triangular permutation [15] and # € £C,. These types
of permutations are useful in parallel memory access of sub- and
superdiagonals of data matrices [4].

2) Any permutation partitionable on the first & least significant
bits into 2% subpermutations—each may be distinct and similarly
partitioned. Permutations of this type are useful in partitionable SIMD
svstems.

Further work in characterizing the classes of permutations real-
ized by the proposed algorithms is needed. Another direction for
further work is in developing simple control algorithms to route any
permutation, specified as an algebraic function, since such types of
permutations are used frequently in parallel processing.

REFERENCES

[1] J. Beetem, M. Denneau, and D. Weingarten, “The GF11 supercomputer,”
in Proc. Int. Symp. Comput. Architecture, 1985, pp. 108—-115.

[2] V.E. Benes. Mathematical Theory of Connecting Networks and Tele-
phone Traffic. New York: Academic, 1965.

[EEE TRANSACTIONS ON COMPUTERS, VOL. 40. NO. 9. SEPTEMBER 1991

[3] G. Birhkoff and S. MacLane. A Survey of Modern Algebra, fourth ed.
New York: Macmillan, 1977.

{4] R.V. Boppana and C.S. Raghavendra, “Generalized schemes for access
and alignment of data in parallel processors with self-routing intercon-
nection networks,” J. Parallel Distributed Comput., vol. 11, pp. 97111,
1991.

[5] T. Etzion and A. Lempel, “An efficient algorithm for generating linear
transformations in a shuffic cxchange nctwork,” SIAM J. Comput.,
vol. 15, no. 1, 1986.

[6] K. Hoffman and R. Kunze, Linear Algebra, second ed. Englewood
Cliffs, NJ: Prentice-Hall, 1971.

[7] D.H. Lawrie, “Access and alignment of data in an array processor,”
IEEE Trans. Comput., vol. C-24, no. 12, 1975.

[8] J. Lenfant, “Parallel permutations of data: A Bene$§ network control
algorithm for frequently used permutations,” /EEE Trans. Comput.,
vol. C-27, 1978.

[9] D. Nassimi, “A fauli-tolerant routing algorithm for BPC permutations
on multistage interconnection networks,” in Proc. Int. Conf. Parallel
Processing, 1989, pp. 278-287.

[10] D. Nassimi and S. Sahni, “A self-routing Benes network and parailel
permutation algorithms,” JEEE Trans. Comput., vol. C-30, no. 5, 1981.

11 , “Parallel algorithms to set up the Bene$ permutation network,”
IEEE Trans. Comput., vol. C-31, pp. 148—154. 1982,

[12] D.S. Parker, “Notes on shuffle/exchange-type switching networks,”
IEEE Trans. Comput., vol. C-29. pp. 213-222. 1980.

[13] M.C. Pease, III, “The indirect binary n-cube microprocessor array,”
IEEE Trans. Comput., vol. C-26, 1977.

[14] C.S. Raghavendra and R. V. Boppana. “An analysis of some self-routing
schemes for multi-stage interconnection networks,” Tech. Rep., Dep.
EE-Systems, Univ. of Southern Cal., Univ. Paik, Lus Angeles, CA
90089-0781, June 1990.

f15] D. Steinberg, “Invariant properties of the shuffle-exchange and a simpli-
fied cost-effective version of the omega network.” IEEE Trans. Comput.,
vol. C-32, pp. 444-450. 1983.

[16] A. Varma and C.S. Raghavendra, “Rearrangeability of multistage shuf-
fle/exchange networks,” IEEE Trans. Commun., vol. COM-36, no. 10,
1988.

[17] A. Waksman, “A permutation network,” J. ACM. vol. 15, no. 1, 1968.

[18] P.-C. Yew and D.H. Lawrie, “An easilv controlled network for fre-
quently used permutations,” IEEE Trans. Comput., vol. C-30, no. 4,
1981.

