Fault-Tolerant Routing with Non-Adaptive Wormhole Algorithms in
Mesh Networks*

Rajendra V. Boppana
Div. of Math. and Computer Science
The Univ. of Texas at San Antonio
San Antonio, TX 78249-0664

boppana@ringer.cs.utsa.edu

Abstract. We present simple techniques to enhance the
e-cube algorithm for fault-tolerant routing in mesh net-
works. These techniques are based on the concept of fault
rings, which are formed using fault-free nodes and links
around each fault region. We use fault rings to enhance
the e-cube to route messages in the presence of rectangular
block faults. We show that if fault rings do not overlap with
one another—the sets of links in fault rings are pairwise
disjoint, then two virtual channels per physical channel are
sufficient to make the e-cube tolerant to any number of
faulty blocks. For more complex cases such as overlapping
fault rings and faults on network boundaries, three or four
virtual channels are used. In all cases, the routing guar-
antees livelock and deadlock free delivery of each and every
message injected into the network. Our simulation results
for isolated faults indicate that the proposed method pro-
vides acceptable performance with as many as 10 percent
faulty links.

Keywords: block faults, deadlocks, fault-tolerant rout-
ing, mesh networks, multicomputer networks, nonadaptive
routing, wormhole routing.

1 Introduction

Point-to-point k-ary n-cube and related networks are be-
ing used in many recent experimental and commercial mul-
ticomputers and multiprocessors [1, 19, 18, 22]. A k-ary
n-cube network has an n-dimensional grid structure with
k nodes (processors) in each dimension such that every
node is connected to two other nodes in each dimension by
direct communication links.

The wormhole (WH) switching technique [23] has been
widely used in the recent multicomputers [19, 18, 22]. In
the wH technique, a packet is divided into a sequence of
fixed-size units of data, called flits. If a communication
channel transmits the first flit of a message, it must trans-
mit all the remaining flits of the same message before trans-
mitting flits of another message. To avoid deadlocks among
messages, multiple virtual channels are simulated on each
physical channel and a pre-defined order is enforced on the
allocation of virtual channels to messages. Alternatives to
the wormhole switching are the virtual-cut-through [17]

*Rajendra Boppana’s research has been supported by NSF Grant
CCR-9208784. Suresh Chalasani’s research has been supported in
part by a grant from the Graduate School of UW-Madison and by
NSF grants CCR-9308966 & ECS-9216308.

In Proceedings of Supercomputing '94, Nov. 14-18 1994,
Washington D.C.

Suresh Chalasani
Electrical & Comp. Engr. Dept.
Univ. of Wisconsin-Madison
Madison, WI 53706-1691

suresh@cauchy.ece.wisc.edu

and store-and-forward [16], which require more storage at
each routing node.

For fault-free networks, some of the most important is-
sues in the design of a routing algorithm are high through-
put, low-latency message delivery, avoidance of deadlocks,
livelocks, and starvation, and ability to work well under
various traffic patterns [12]. For networks with faults, a
routing algorithm should exhibit the following additional
features: graceful performance degradation, and ability to
handle faults with only a small increase in routing complex-
ity and local knowledge of faults—each non-faulty proces-
sor knows only the status of its neighbors.

The well-known e-cube algorithm routes messages in a
strictly ascending order of dimensions; that is, a message
takes hops in dimension 0 (if any), then in dimension 1 (if
any), and so on to reach its destination. Thus, the e-cube
algorithm uses a fixed path to route messages between a
pair of nodes even when multiple shortest paths are avail-
able, and is termed non-adaptive.

Description of the problem. In this paper, we address
the issue of incorporating fault-tolerance into nonadaptive
wormhole routing algorithms such as the e-cube. We de-
velop our techniques for the e-cube algorithm, which has
been used in many recent parallel computers [19, 23, 1, 18,
22]. Because of its nonadaptive nature, the e-cube cannot
handle faults. Thus, even for a single fault, many pairs of
nodes cannot communicate under the e-cube algorithm. In
this paper, we present a method to enhance the e-cube for
fault-tolerant routing in meshes. The enhanced algorithm,
called fcube, tolerates multiple faults, while retaining the
simplicity and livelock- and deadlock-free routing of the
e-cube.

We believe that our methods to enhance the e-cube
for fault-tolerant routing form the foundation for adaptive
fault-tolerant algorithms. Because even with adaptivity,
some messages may not have multiple paths to use. For
example, with adaptive, minimal (shortest path) routing,
messages between two adjacent nodes have no adaptivity.
If the link connecting these two nodes is faulty, then the
adaptive algorithm cannot route messages between them
without violating the shortest-path constraint. The tech-
niques used for the fcube can be applied to handle such
cases [6, 4].

When adaptive, nonminimal routing is used, livelocks
may arise. To avoid livelocks, a backup nonadaptive rout-
ing algorithm is often used. For example, the dimension

reversal schemes of Dally and Aoki [9] have the e-cube al-
gorithm as the backup algorithm. Our techniques can be
used, for example, when messages routed by backup algo-
rithms encounter faults.

We consider routing methods that require only local
knowledge of faults. Further, our techniques assume that
faulty processors are confined to one or more rectangular
blocks. With the current technology and anticipated ad-
vances in packaging, each node (processor-memory-router
combination) of a multicomputer could be implemented as
a single chip or as a multichip-module, with several such
nodes placed on a printed circuit board. The block-fault
model accurately models faults at the chip, multichip mod-
ule, and board levels.

For each fault region, there exist one or more paths
that pass through fault-free nodes and links and encircle
the fault. For a fault in a 2D mesh, there is an undirected
ring of fault-free nodes and links. This is the fault-ring for
that fault. In this paper, we show that fault-rings can be
used to route messages around the fault regions using only
local knowledge of faults, and without introducing dead-
locks and livelocks. Further, we show, using simulations,
that good performance may be achieved even with 10% of
the links faulty.

Related results. Routing algorithms for wH and virtual
cut-through switching techniques has been the subject of
extensive research in recent years [7, 11, 14, 9, 15, 21, 2].
Several results have been reported for fault-tolerant rout-
ing in hypercubes. These results exploit the rich intercon-
nection structure of hypercubes and are not suitable for
high-radix, low-dimensional meshes.

Reddy and Freitas [20] use global knowledge of faults
and routing tables to investigate the performance limita-
tions caused by faults. Gaughan and Yalamanchili [13]
use a pipelined circuit-switching (PCS) mechanism with
backtracking for fault-tolerant routing. Glass and Ni [15]
present a partially-adaptive algorithm, called negative-first,
that tolerates up to (n — 1) faults in an n-dimensional
mesh without any extra virtual channels. Unfortunately,
the negative-first and its related algorithms do not have
good performance for the fault-free case [3], and the num-
ber of faults tolerated is too few, for example, one for a 2D
mesh. Dally and Aoki [9] have developed the dimension re-
versal (DR) algorithm to provide adaptive, fault-tolerant
routing in meshes. The DR algorithm can tolerate faults
of arbitrary shapes, but in the worst case, requires virtual
channels proportional to the number of faults tolerated.

Chien and Kim [7] present a partially adaptive algo-
rithm to handle block faults in meshes. Their method uses
three virtual channels for fault-tolerant routing. However,
their method cannot handle faults on the boundaries of
mesh without excessive loss of computational power. For
example, to handle a node fault in the top row of a 2D
mesh, all other nodes in that row must be labeled faulty.
In contrast, our methods yield several routing schemes de-
pending on the positions of faulty blocks. If the faults do
not lie on network boundaries and the fault-rings do not
overlap—that is, the sets of links in fault-rings are pairwise
disjoint— then two-channels are enough for fault-tolerant
routing. Three channels are sufficient to handle faults on
network boundaries. Four virtual channels are sufficient to
handle more complex situations such as overlapping fault-
rings and faults on network boundaries.

Organization of the paper. Section 2 describes the
fault-model and fault-rings. Section 3 presents the main re-
sult: fcube, the fault-tolerant version of e-cube. Section 4
investigates the performance of the fcube using simula-
tions of 2D meshes with faults. Section 5 summarizes the
results and presents directions for future work.

2 Preliminaries

We use the following notation for mesh and torus net-
works. A (k,n)-torus (also called k-ary n-cube) has n di-
mensions, denoted DIMo,...,DIMp—1, and N = k" nodes.
Each node is uniquely indexed by an n-tuple in radix k.
Fach node is connected via communication links to two
other nodes in each dimension. The neighbors of the node
z = (%n-1,...,00) In DIM;, 0 < ¢ < n, are (Tp_1,..., Tit1,
;o £ 1,221, .. .,a:o)7 where addition and subtraction are
modulo k. A link is said to be a wraparound link if it
connects two neighbors whose addresses differ by £k — 1 in
DIM;. A (k,n)-mesh is a (k, n)-torus with the wraparound
connections missing. The well-known binary hypercube
is the (2,n)-mesh. In this paper, we consider (k,n)-mesh
networks for small n, large k, and with bidirectional links—
implemented using two unidirectional physical communi-
cation channels. We denote the link between nodes x and
y by < z,y > and virtual channels of class ¢ as ¢;.

A message that reaches its destination is consumed in
finite time. Following Dally and Seitz [10], we use channel
dependency graphs and multiple virtual channels to inves-
tigate deadlock properties of routing algorithms. Using
extra logic and buffers, multiple virtual or logical channels
can be simulated on a physical channel in a time-demand
multiplexed manner [8, 5]. We always specify the number
of virtual channels on per physical channel basis.

In the remainder of this section, we describe the fault
model considered in this paper and the concept of fault-
rings, which are created by faults. To simplify presenta-
tion, we discuss these concepts for two-dimensional (2D)
meshes. We label the four sides of a 2D mesh as North,
South, East and West.

2.1 The fault model
We consider both node and link faults. All the links in-

cident on a faulty node are considered faulty. We assume
that failed components simply cease to work and that mes-
sages are generated among nonfaulty processors only.

We model multiple simultaneous faults, which could be
connected or disjoint. We assume that the mean time to
repair faults is quite large, a few hours to many days, and
that the existing fault-free processors are still connected
and thus should be used for computations in the mean
time. We develop fault-tolerant algorithms which assume
that each non-faulty processor knows only the status of its
neighbors, since maintaining the global knowledge of faults
is difficult in a massively parallel system.

A fault set is a set of faulty nodes and links. A set
F' of faulty nodes and links indicates a (rectangular) fault
block, or f-region, if there is a rectangle connecting various
nodes of the mesh such that (a) the boundary of the rect-
angle has only fault-free nodes and channels and (b) the
interior of the rectangle contains all and only the compo-
nents given by F. A fault set that includes a component
from one of the four boundaries—top and bottom rows,

Figure 1: Examples of f-rings and f-chains in a 6 x 6 mesh.
Faulty nodes are shown as filled circles, and faulty links
are not shown.

left most and right most columns—of a 2D mesh denotes a
rectangular fault block, if the above definition is satisfied
when the mesh is extended with nonfaulty wvertual rows
and columns on all four sides. Figure 1 indicates three
rectangular fault blocks: F1 = {(3,3),(3,4), (4,3),(4,4)},
F, ={< (1,1),(2,1) >,< (1,2),(2,2) >}, and F5 = {<
(0,4),(0,5) >J.

We use the block-fault model, in which each fault be-
longs to exactly one fault block. Under the block-fault
model, the complete set of faults in a 2D mesh is the union
of multiple fault blocks. For example, the complete fault
set for the network in Figure 1 1is Fy U Fy U Fs.

It can be easily verified that, under the block fault
model, each fault-free node has faulty links incident on
it in at most one dimension. Fault blocks that touch both
row boundaries or both column boundaries disconnect the
network and, hence, are not considered. (If the network
is disconnected, our results can be applied to each of the
connected subnetworks.)

It is noteworthy that Chien and Kim also consider block
(convez in their terminology) faults [7]. However, their
model does not effectively deal with faults on the net-
work boundary. For example, to handle the faulty-link
< (0,4),(0,5) > with their fault model, Chien and Kim la-
bel all nodes in row O faulty. This causes a significant loss
of computational power, even when the number of faulty
components in the network is small. Our fault model treats
such faults as rectangular and handles them without label-
ing other working components as faulty.

2.2 Fault rings and fault chains

Conceptually, fault regions may be considered as lakes of
faults in a terrain of communication channels and nodes.
In the same manner an automobile is driven around a lake
to reach the other side, it should be feasible to route a
message around fault regions. For this purpose, we use
the concept of fault rings, denoted f-rings.

For each f-region in a network with faults, it is feasible
to connect the fault-free components around the region to
form a ring or chain. This is the fault ring, f-ring, for
that region and consists of the fault-free nodes and links

that are adjacent (row-wise, column-wise, or diagonally) to
one or more components of the fault region. The f-ring of
an f-region is of rectangular shape. For example, the f-ring
associated with the f-region F in Figure 1 has nodes (2,2),
(23), (24), (25), (35}, (43), (35), (5,4), (53), (5.2).
(4,2), and (3,2) on its boundary. It is noteworthy that a
fault-free node is in the f-ring only if it is at most two hops
away from a faulty node. There can be several fault rings,
one for each f-region, in a network with multiple faults. In
a (k,n)-mesh, a link may be common to up to 2(n — 1) f-
rings and a node common to up to 2n f-rings. A set of fault
rings are said to overlap if they share one or more links.
For example, the f-rings of F1 and F> in Figure 1 overlap
with each other, since they share link < (2,2), (2,3) >.

When an f-region touches one or more boundaries of the
network (e.g., Fs in Figure 1), a fault chain, f-chain, rather
than an f-ring is formed. There are four basic types of fault
chains that are formed when an f-region touches exactly
one of the (2D) network boundaries—top and bottom rows,
leftmost and rightmost columns. The fault chain of an f-
region that touches more than one edge of the network can
be synthesized from these four basic f-chains. The nodes
at which an f-chain touches the network boundaries are the
end nodes of the f-chain.

An f-ring (respectively, f-chain) represents a two-lane
(respectively, one-lane) path to a message that needs to
go through the f-region contained by the f-ring. Thus,
an f-ring simulates four paths to route messages in two
dimensions. Depending on the size of the f-region, physical
channels in an f-ring may need to handle a large amount of
traffic compared to the other fault-free physical channels.
Further, routing messages on fault-rings creates additional
possibilities for deadlocks.

When a fault occurs, the corresponding f-ring (or f-
chain) can be formed in a distributed manner using a two-
step process. In the first step, each processor that detected
a faulty link sends this message to its neighbors in other
dimensions. Based on the set of messages received, each
node determines its position on the f-ring. There are eight
possible positions for a processor to be in an f-ring: North
West corner, North, North East corner, East, South East
corner, South, South West corner, and West. More details
are given in [4].

3 The fault-tolerant e-cube algorithm

The e-cube routes messages deadlock free when there are
no faults in the mesh network. With multiple virtual chan-
nels simulated on each physical channel, the e-cube can
achieve impressive network utilizations for uniform traffic.
It cannot handle faults, however, due to its nonadaptive
nature.

Our fault-tolerant variant of the e-cube, called fcube,
uses two virtual channels to handle nonoverlapping fault
rings. The fcube can handle more complex cases of f-
chains and overlapping f-rings and f-chains using addi-
tional virtual channels. We first describe the fcube for
two-dimensional (2D) meshes, and then extend them to
multidimensional meshes. It is assumed that each fault-
free node knows the status of its links and its position on
an f-ring if it has faulty links.

3.1 Routing messages in nonoverlapping f-rings

For this simple case, the fcube requires two classes of vir-
tual channels, ¢ and ¢, and is denoted fcube2. Let row
hops be hops in DIMgy and column hops be hops in DIM; .

Definition 1 (E-cube hop) At any time, the path spec-
tfied by e-cube from the current host to the destination of
a message 18 the e-cube path of the message; the first hop
in that path is its e-cube hop from the current host node.

In a fault-free network, a message takes row hops until it
is in the same column as the destination and then takes
column hops.

Definition 2 (Message type) A message that has one
or more row hops remaining is called a row message. A
message that needs to travel only in a column to reach its
destination s called a column message.

A row message traveling West to East (respectively, East
to West) is a WE (respectively, EW) message. Similarly,
NS and SN messages are column messages that travel from
North to South and South to North, respectively. A row
message may eventually take column hops, but before do-
ing that it changes itself into a column message. A column
message never changes its type in e-cube routing.

3.1.1 The fcube2 algorithm

The routing logic of the fcube2 algorithm is given in
Figure 2. Let M denote a message in the network. At each
intermediate node, a message M is routed to the next node
using the procedure Route-Message(M). For this purpose,
we use a message status parameter which can be normal or
misrouted. The criteria for setting the status of a message
is given by Procedure Set-Status in Figure 2. The status
parameter of a message indicates whether the message is
blocked by a fault and needs to travel on the corresponding
f-ring to reach its destination.

Fach time a message’s status changes from normal to
misrouted, its direction along the f-ring is set using the pro-
cedure Set-Direction; once a message’s direction is set for
the current f-ring, it stays the same throughout its journey
on that f-ring (Step 1 of Set-Direction in Figure 2). The
direction of a misrouted message is reset to null when it
becomes normal.

A misrouted NS (respectively, SN) message’s direction
is set to clockwise (respectively, counter-clockwise) regard-
less of its current host, and is routed on a f-ring in the
clockwise (respectively, counter-clockwise) direction only
(Steps 2 and 3 in Figure 2). For an EW message, the di-
rection is set to counter-clockwise (respectively, clockwise),
if the destination is in a row above (respectively, below)
the current host; if the current host and destination are in
the same row, clockwise or counter-clockwise direction is
chosen randomly (Step 4). A similar rule is used for WE
messages (Step 5). The use of f-ring channels by row and
column messages is illustrated in Figure 3.

Example. As an example, consider the routing of a mes-
sage from (1,0) to (4,4) in Figure 4. Its normal e-cube
path is

(1,0) = (1,1) = (1,2) = (1,3) = (1,4) —
(2,4) = (3,4) = (4,4).

Procedure Set-Status(M)

If the next e-cube hop is not blocked by a fault,
then set the status of M to normal
and the direction of M to null.

Otherwise, set the status of M to misrouted
and Set-Direction(M).

Procedure Set-Direction(M)
/* Comment: The current host of M is (a1,a0) and
its destination (by,bo). */

1 If direction of M is not null, return.

/* M is misrouted and had its direction set */
2 If M is NS, set direction to clockwise.
3 If M is SN, set direction to counter-clockwise.
4 If M is EW, set direction to

4.1 clockwiseif (a1 < by),

4.2 counter-clockwiseif (a1 > bl)7 or

4.3 either orientation, if (a1 = by).
5 If M is WE, set direction to

5.1 clockwiseif (ay > by),

5.2 counter-clockwiseif (a1 < bl)7 or

5.3 either orientation, if (a1 = by).

Procedure Route-Message(M)

/* Comment: The current host of M is (a1,a0) and
its destination (b1,bo). Row messages use c¢qg virtual
channels and column messages use c; virtual channels.

*/
0 If ay = b; and ag = by, consume M and return.

1 If M is arow (EW or WE) message and ao = b,
change its type to NS if a; < by or SN if a; > b;.

2 Set-Status(M).
3 If M is normal, use the e-cube hop.

4 Otherwise, route M on the fault-ring in the specified
direction.

Figure 2: Pseudocode of the fcube2 algorithm.

W --> E
c0 c0
f-ring f-ring
c0 c0
N --> 8 §-->N
cl
f-ring f-ring
cl

Figure 3: Usage of virtual channels in a f-ring. For each
type of misrouted message, the class and sequence of vir-
tual channels used is indicated.

M is normal at (1,0). After the first hop, it is misrouted
at (1,1), since its e-cube hop, (1,1) — (1,2), is blocked
by faulty node (1,2). Because its destination, (4,4), is
south of (1,1), M’s direction is set to counter-clockwise
and routed to (2,1). For the next three hops, (2,1) —
(2,4), M travels as a normal WE message, since the hops
are on the e-cube path from (2,1) to (4,4). At node (2, 4),
M becomes a NS message, since it only needs to take hops
in the South direction. At (3,4), M is blocked by the faulty
link < (3,4),(4,4) >, which forces M to be misrouted;
hence, M travels in the clockwise direction from (3,4) to
(4,5). At (4,5), M is normal again and takes its final hop
to (4,4). M uses cg channels up to (2,4), where it changes
into an NS, and ¢; for the remaining hops.

3.1.2 Proof of deadlock-free routing of fcube2

We now prove that f-cube2 provides deadlock free routing
of messages in 2D meshes with nonoverlapping f-rings.

Lemma 1 The two channel f-cube2 algorithms provides
correct and livelock- and deadlock-free routing in 2D meshes
with any number of nonoverlapping f-rings.

Proof. For the deadlock to occur, there has to be a cyclic
dependency on the virtual channels acquired by the mes-
sages involved in the deadlock.

Row messages may turn into column messages after a
few hops, but column messages never turn into row mes-
sages. Since row messages use only class 0 virtual chan-
nels and column messages use only class 1 virtual chan-
nels, there cannot be a deadlock cycle involving both row
and column messages. Conceptually, the network may be
considered as a union of two planes, plane 0 with virtual
channels of class 0, and plane 1 with virtual channels of
class 1. A message may move from plane O to plane 1 but
never in the opposite direction.

Therefore, if there is a deadlock, then it is among the
channels of class 0 or class 1 only.

Class 0 channels are used by two types of row messages:
messages going from West to East (WE) and those going
from East to West (EW). The WE messages use virtual
channels of class 0 only on West to East physical channels,

O O O
N —_— [J
¢} C O

Figure 4: Routing of a message in a mesh with two non-
overlapping f-rings.

and virtual channels of class 0 on West columns of the f-
rings in the network. The messages from East to West use
virtual channels of class 0 only on East to West physical
channels, and virtual channels of class 0 on East columns
of the f-rings in the network. The sets of physical channels
and, hence, the set of virtual channels used by WE and
EW are disjoint. (See Figure 5 for an example.) Therefore,
there cannot be deadlocks among row messages.

There are two types of column messages: NS and SN.
Each type uses two disjoint sets of physical channels, since
they are routed in opposite directions on f-rings. There-
fore, there cannot be deadlocks among column messages.

To see that fcube2 correctly routes messages without
introducing livelocks in the faulty network observe that (a)
a message is misrouted only around an f-ring, (b) a mes-
sage, once it leaves an f-ring will never revisit it, (c) there
are a finite number of f-rings in the mesh, (d) a normal
message progresses towards its destination with each hop,
and (e) the destination node is accessible, since all non-
faulty nodes are connected. Since a message is misrouted
only by a finite number of hops on each f-ring and it never
visits an f-ring twice, the extent of misrouting is limited.
This together with the fact that each normal hop takes a
message closer to the destination proves that messages are
correctly delivered and livelocks do not occur.

3.1.3 A more flexible f~cube2

One source of performance loss with the fcube2 is the un-
balanced use of channels on f-rings by misrouted column
messages, which never use channels in the West columns
of f-rings. This can be avoided by allowing column mes-
sages to choose the orientation such that the paths tra-
versed on f-rings are shortest paths. This effectively par-
titions the links of each f-ring into two groups. Because of
the shortest-path constraint, each column message uses c;
channels on the links from only one of these groups for its
traversal on an f-ring; therefore, the routing is still dead-
lock free. This has two benefits for column messages: (i)

Figure 5: Acyclic directed networks used by the f-cube2
algorithm to route the four types of messages in a mesh
with faults. The faulty links are not shown and the faulty
node is the shaded node. The network in part (a) is used
by West-to-East messages, part (b) by East-to-West mes-
sages, part (c) by North-to-South messages, and part (d)
by South-to-North messages. Solid directed lines indicate
virtual channels of class 0, dashed directed lines indicate
class 1, and undirected lines indicate unused channels for
a message type.

both orientations on f-rings are used, there by making the
load on f-ring channels more balanced, and (ii) fewer f-ring
channels are used. However, since we assume only local
knowledge of faults, routing in shortest paths on f-rings
may not be feasible except in one often-used case: isolated
node and link faults. Therefore, for isolated node and link
faults, f~cube2 can use either orientation to route blocked
column messages on f-rings without creating deadlocks.

3.2 Routing messages on f-rings and f-chains

We now extend the fcube2 algorithm to handle faults on
network boundaries, which cause f-chains, and overlapping
f-rings and f-chains.

3.2.1 Nonoverlapping f-rings and f-chains

Because faults are known only locally, f-chains are treated
as f-rings by all but the corresponding end nodes. There-
fore, fcube2 may route a message on an f-chain in the
direction that actually leads to a dead end. As an exam-
ple, consider the routing of a WE message, M, from s to d

Figure 6: Example of u-turn on an f-chain. The shaded
area indicates a f-region and dotted lines the corresponding
f-chain. The path of the message after u-turn is indicated
by a dashed line. The u-turn path overlaps with the path
taken on f-chain from a to b before the u-turn.

on the f-chain in Figure 6. When M touches the f-chain at
node a, it 1s routed in NE orientation, since d is in a row
above a. As a result, M reaches node b, an end node of
the f-chain. The fcube2 as described above cannot han-
dle this situation unless the routing logic is modified. A
similar scenario can be constructed for EW messages. For
column messages f-regions that include nodes or links from
the East boundary (rightmost column) of the mesh cause
such difficulties. The following modification to the routing
logic of fcube2 solves this problem.

If a misrouted message, M, reaches an end node of an
f-chain and if its e-cube hop takes M to its previous
host or is on a faulty link (M’s destination is still on
the other side of the f-region), then the direction of M
is reversed (from clockwise to counter clockwise and
vice-versa) and is routed as per fcube2 routing rules
in Figure 2.

Continuing with the example in Figure 6, the message
takes a u-turn, as per the above modification, and travel
on the f-chain in the opposite direction to reach the other
side of the f-region. Finally when it reaches node e on the
f-chain, the SE corner node, the message leaves the f-chain
and completes its journey using the e-cube algorithm.

The u-turns on f-chains cause additional channel de-
pendencies. Recall that in fcube2, EW and WE messages
share cg virtual channels and NS and SN share ¢; virtual
channels. When the same assignment is used for routing
f-chains, deadlocks are avoided in all but one case. For mis-
routed row messages on all types of f-chains and misrouted
column messages on f-chains corresponding to faulty blocks
touching leftmost column of the mesh, the sets of virtual
channels used are disjoint. The only case that causes dead-
locks is misrouted column messages on f-chains with end
nodes on the rightmost column of the mesh. On these f-
chains, the virtual channels used by NS and SN messages
are not disjoint because of u-turns.

To avoid these deadlocks, we use three virtual chan-
nels: ¢o, ¢1, and c2. WE and EW messages share ¢g, NS
messages use ¢ exclusively, and SN messages use ¢z exclu-
sively. Since NS (similarly, SN) messages use an exclusive
class of virtual channels, they can be allowed to use either
orientation—clockwise or counter clockwise—to travel on
f-rings and f-chains. There is no restriction that the paths
traversed on f-rings and f-chains should be shortest paths.

The f-chains corresponding to f-regions touching more
than one boundary of the network block even fewer types
of messages and are simpler to handle. For example, only
WE messages need to be misrouted on the f-chain of an

f-region touching the North and East boundaries of the
network.

We call this the fcube3 algorithm. It uses one more
virtual channel than f-cube2, but handles f-chains and bal-
ances traffic on f-rings.

Lemma 2 The f-cube3 provides correct and livelock- and
deadlock-free delivery of each and every message injected
into a mesh with nonoverlapping f-rings and f-chains.

Proof sketch. Since the main arguments of the proof are
similar to those for the f-cube2, we provide a proof sketch
only. The main difference between fcube2 and fcube3 is
the u-turns sometimes taken by messages on f-chains.

It can be easily verified that the path traversed by a
type of messages on an f-chain is acyclic even with u-turns.
For example, WE messages on the f-chain in Figure 6 tra-
verse on whole or part of the acyclic path ¢ - b — ¢ — e
and EW messages on e -+ f — e — c¢. Similar observa-
tions hold for the u-turns by column messages. Thus the
paths of a message type are still acyclic. Following the ar-
guments of f-cube2, one can easily show that WE and EW
messages use disjoint sets of physical channels and hence,
disjoint sets of ¢o channels.

Column messages are more complex than row messages,
since they traverse three sides of an f-ring or f-chain. For
this reason, we provide an exclusive class of virtual chan-
nels for each type of column messages. The use of either
orientation on f-rings and f-chains by column messages
does not create any new dependencies. Using these facts
and the arguments of Lemma 1 one can prove that f-cube3
is deadlock free. The issues of livelock-free and correct
delivery are proved as in Lemma 1.

3.2.2 Overlapping f-rings and f-chains

When two f-rings overlap along a column (respectively,
row), some nodes in that column (respectively, row) be-
long to the West (respectively, North) boundary of one
f-ring and to the East (respectively, South) boundary of
another f-ring. The proof of Lemma 1 is based on the fact
that EW messages only use the East boundaries of f-rings
and WE messages use only the West boundaries of f-rings.
However, when f-rings overlap, this condition is no longer
met, and the sets of physical channels used by WE and
EW messages are no longer disjoint. Similar observations
can be made for NS and SN messages, which share ¢; class
channels in f-cube2. The f-cube can be used in such cases
by providing one class of channels for each of four message
types. This is the fcubed algorithm. The fcubed algo-
rithm handles f-chains using the logic of fcube3. More
details are given in [4].

3.3 Routing in multidimensional meshes

The results we have developed for the two-dimensional
meshes can be extended to n-dimensional (nD) meshes us-
ing the planar-adaptive routing (PAR) technique [7]. We
illustrate this for the f~cube2 algorithm.

The block-fault model for nD meshes is as follows. An

nD box has a base node © = (xp_1,...,20) and apex node
Yy = (Yn—1,...,Y0) and the set of nodes of the form ¢ =
(tn—1,-..,to) such that z; < & <y, for0 <i < n. Ifa

fault set is contained in an nD box such that the interior

Table 1: Use of planes and virtual channels by various
messages in an nD mesh with fcube2 routing.

Message type | Plane type | Virtual channel classes
Mo Ao Co
M; A c1
M, Aas Co

M,_1, n even Ap—1,0 c1

1\/[71_17 n odd An_170 Co in DIMp—1, C1 in DIMg

of the box has only the faulty components and none on its
exterior, then the fault-set represents a block-fault.

Now the extension of the f-cube2 to nD meshes follows
naturally. The fcube2 still needs only two virtual channels
and handles cases where only nonoverlapping f-rings are
formed. The key issue is how virtual channels and planes
are used to route messages. Following Chien and Kim’s
notation we let A; ;, where 0 <1 < j < n, denote the set
of all 2D planes formed using dimensions ¢ and j. Further,
Ai; = A;;. For fcube2, we use only planes in sets A; ;,
where 0 <i<nand yj=i+1 (mod n).

A normal message that needs to travel in DIM;, 0 <1 <
n, as per the e-cube is an M; message and is routed in a
plane of the type A;;,7 =i+ 1 (mod n). A M; message
that completed its hops in dimension DIM; becomes a DIM;
message, where 7 > ¢ is the next dimension of travel as
per the e-cube algorithm. A blocked message uses the f-
ring in its current 2D plane to get around faults. Table
1 indicates the types of planes and virtual channels used
in routing various types of messages by the fcube2. For
n = 2, it is the same as described in Section 3.1. The proof
of deadlock free routing is straight forward and is omitted.

4 Simulation results

To study the performance issues, we have developed a flit-
level simulator. This simulator can be used for wormhole
routing in k-ary n-cubes (meshes and tori) with and with-
out faults. In this section, we present simulation results for
the performance of the fault-tolerant fcube2 for the case
of nonoverlapping f-rings.

We have simulated a 16 x 16 mesh for the uniform traf-
fic pattern with 20-flit messages. The virtual channels on
a physical channel are demand time-multiplexed, and it
takes one cycle to transfer a flit on a physical channel. The
message interarrival times are geometrically distributed.

We use bisection utilization and average message la-
tency as the performance metrics. The bisection utilization
(pu) is defined as follows.

p» = Number of bisection messages delivered/cycle x
Message length
Bisection bandwidth

The bisection bandwidth is defined as the maximum num-
ber of flits that can be transferred across the bisection in a
cycle, and is proportional to the number of nonfaulty links
in the bisection of the network—for example, the row links
connecting nodes in the middle two columns of the 16 x 16
mesh. A message is a bisection message if its source and

destination are on the opposite sides of the bisection of the
fault-free mesh. The average message latency is the aver-
age time from the injection to consumption of a message.

Recent studies [5, 8] have shown that providing more
virtual channels than those necessary for deadlock free
routing improves the performance of the e-cube consider-
ably. Therefore, we have experimented with two and four
virtual channels per physical channel. For each required
class, one virtual channel i1s provided. The extra virtual
channels are placed in a free pool. If a message is sup-
posed to use a virtual channel of class v for a hop and if
that virtual channel is busy, then the message takes any
idle virtual channel from the free pool, relabels it as virtual
channel of class v, and uses it. A free pool virtual chan-
nel relinquished by a message is returned to the free pool.
A message that finds the virtual channel of its class and
all virtual channels in the free pool busy simply waits for
one cycle and retries. For the simulations with two virtual
channels, each of ¢ and c¢; classes are allocated one vir-
tual channel. For simulations with four virtual channels,
the extra two are placed in a free pool. Since the number
of virtual channels for any class is at least one at all times,
deadlock-free routing is preserved.

In all cases, each physical channel is provided with 16
flit buffers. For the two virtual channel case, each vir-
tual channel has buffer depth of 8 flits; that is, up to 8
consecutive flits of a message using a virtual channel can
be buffered for that virtual channel. For the four virtual
channel case, each virtual channel has buffer depth of 4
flits.

To facilitate simulations at and beyond the normal sat-
uration points for each routing algorithm, we have limited
the injection by each node. This injection limit is indepen-
dent of the message interarrival time. After some exper-
imentation, we set the injection limit to 2, which means
that a node may inject a new message if fewer than two of
its previous messages are still in the node. When there are
faults in the network, the injection limit has little effect on
the latency and throughput values prior to the saturation.

We have simulated a 16 x 16 mesh with 1%, 5%, and
10% of the total network links faulty. We have used a
mixture of node and link faults. Node faults cause more
severe congestions, since a node fault blocks both row and
column messages while a link fault blocks only one type of
messages. Specifically, for the 1% case, we have set, ran-
domly, a node and link faulty; since 4 links are incident on
a node, 5 of the 480 links—10 of the 960 physical chan-
nels in the network—in the network are faulty. For the 5%
fault case, we have set 4 nodes and 8 links faulty; for the
10% fault case, we have set 8 nodes and 16 links faulty. In
each case, we have randomly generated the required num-
ber of faulty nodes and links such that isolated faults with
nonoverlapping f-rings are formed. Since we have created
only isolated faults, we have simulated the more flexible
version of f-cube2 (described in Section 3.1.3).

4.1 Performance for various fault cases

In this section, we present the performance of the fcube2
for a fixed fault set in each fault case with varying load.
The results for two- and four-channel cases are given in
Figures 7 and 8. For each value reported in these graphs,
the 95% confidence interval is within 10% of the value.

In the two-channel, fault-free case, the fcube2 actu-
ally simulates the classical e-cube algorithm, since only

400
350
—~ 300
0
it
v 250 r
>
9
= 200
>
o
§ 150 1
e}
]
= 100 r
50 r
0
0 0.2 0.4 0.6 0.8 1
Offered Traffic (fraction of capacity)
1 T T T T
Op ——
lp =—
e} 5p A
S 0.8 10p ~* 1
s}
©
N
-
— 0.6 |
-
D
=)
o
o 0.4 r
A
e}
9]
9]
2ol
2 0.
0
0 0.2 0.4 0.6 0.8 1

Offered Traffic (fraction of capacity)

Figure 7: Performance of the f-cube2 algorithm with two
virtual channels per physical channel. The label dp indi-
cates results for d% faults.

one class of virtual channels in each physical channel are
used in the absence of faults. The peak utilization is close
to 60%. (This value differs from the classical result of
50% utilization for the e-cube [23], probably because of
the buffer depth used. A separate set of simulations, not
reported here, have indicated that when the buffer depth is
4, 50% utilization is obtained.) Similarly, the four-channel,
fault-free case actually simulates the e-cube with three vir-
tual channels.

Now, let us consider the performance of f-cube2 under
faults. There is a sharp drop in the performance even
with 1% (five links) faults. For the two-channel case, the
latencies increase starting at 20% offered load. The f-cube2
is more resistant to increase in latencies when four virtual
channels are used. In terms of utilization, the fcube2 is
consistent with its fault-free performance for up to 40%
load in both cases. But there is a large decrease in the
utilization at high loads. With more faults, the fcube2
shows graceful degradation of performance. In all cases,
four channels give better performance than two channels.

The dramatic reduction in throughput and increase in
latencies can be explained as follows. Since the e-cube
is nonadaptive, each misrouted message in the network is

Op —~—
350
—~ 300 r
o)
it
v 250 r
>
0
= 200
>
o
§ 150 1
e}
©
= 100 r
50 r
0
0 0.2 0.4 0.6 0.8 1
Offered Traffic (fraction of capacity)
1 T T T T
Op ——
1lp =—
e} 5p A
S 0.8 10p ~* 1
s}
o
N
-
— 0.6
-
e}
=
o
o 0.4 r
-
e}
[9)
9]
R
o 0.
0
0 0.2 0.4 0.6 0.8 1

Offered Traffic (fraction of capacity)

Figure 8: Performance of the fcube2 algorithm with four
virtual channels per physical channel. The label dp indi-
cates results for d% faults.

routed around one or more f-rings. Thus there is heavy
contention for channels on each f-ring in the network, which
makes each f-ring a hotspot. This reduces throughput and
increases latency even for normal messages which may be
waiting for the channels reserved by the misrouted mes-
sages outside f-rings.

4.2 Peak performance

The results reported above are specific to a randomly gen-
erated fault set for each fault case. To see the performance
limits of fcube2, we have conducted further simulations
with 15 different randomly generated fault sets for the 1,
5, and 10 percent fault cases. The injection rate is such
that the load on the network would be 80% in the absence
of faults. For each fault set of each fault case, we have sam-
pled 100,000 delivered messages after the network reached
its steady state. Then, we have computed the average of
the samples for each metric. The results are given in Figure
9. For the sake of comparison, the fault-free performance
at 80% load is also indicated. The vertical bars indicate
the 95% confidence intervals. Four channels yield much
better performance than two channels. For 1% faults, the

450 ' | | |
400 r
2 channels

_. 350 A
o

ol |
: J
g 250 |
L ~ 4 channels

200 { 1

100 | 1

Latency
=
w
o
T
L

50 r 1

0
0 2 4 6 8 10
Percentage of Faults

1 T T T T

4 channels
I

T

Bisection Utilization

0.4 r 2 channels T
0.2 b
0 L L L L
0 2 4 6 8 10

Percentage of Faults

Figure 9: Comparison of peak performances of the f-cube2
for two- and four-channel cases.

latency is lower by 50 cycles and utilization is higher by
16% with two extra virtual channels. For 10% faults, the
latency is lower by 90 cycles and utilization is higher by
22%.

The fcube2 does not misroute a message before it is
blocked by a fault. So, the fcube2 is a nonadaptive al-
gorithm with respect to congestions. Dally and Aoki [9]
report that the fully-adaptive dimension-reversal method
achieves a peak throughput of 0.54 with 8% faults when
16 virtual channels are used. Our simulations for isolated
faults indicate that the fcube2 provides similar through-
puts (50% utilization with 10% faults) with only four vir-
tual channels. For a more direct comparison, one should
simulate both algorithms in the same simulation program.

5 Concluding remarks

We have presented techniques to enhance the nonadap-
tive e-cube algorithm for fault-tolerant wormhole routing
in mesh networks. We have used the block-fault model in
which faulty processors and links form multiple rectangu-
lar regions. The concept of fault-rings and fault-chains is
used to route around the fault-regions. Our algorithms are

deadlock- and livelock-free and correctly deliver messages
between any pair of nonfaulty nodes in a connected com-
ponent of the network even when there are multiple faulty
blocks and faults on the boundaries of network.

Fault tolerance is always expensive. The cost of fault
detection and isolation is common to every routing method
that needs to handle faults at the network level. The ad-
ditional cost of implementation of our proposed methods
is small compared to many previously proposed routing
methods. First, multiple virtual channels are required to
provide fault-tolerant routing. When f-rings and f-chains
do not overlap with one another, two or three virtual chan-
nels per physical channel are sufficient. Overlapping f-rings
and f-chains can be handled using four virtual channels [4].
Second, a special bit the message header is needed to in-
dicate message status: normal or misrouted. Third, the
router logic should handle misrouting on fault rings and
u-turns. This can be easily implemented by making the
routing logic programmable. Finally, each node should
have additional logic to send status messages to its neigh-
bors and determine its position in fault rings. This can be
achieved using a distributed two-step algorithm [4].

We have simulated f-cube, the fault-tolerant version of
the e-cube algorithm. The first few faults are significant
in terms of performance. The fcube shows a significant
drop in the throughput even for a small number of faults.
However, the fcube shows graceful degradation of perfor-
mance with further increase in faults. Adaptive algorithms
are less susceptible to this phenomenon and exhibit a more
graceful degradation of performance [6, 4].

Though we have not considered, our techniques may be
extended to tori using at most two times as many channels
as used for meshes. Further, the proposed techniques can
be used to make minimal, fully-adaptive algorithms fault-
tolerant [4, 6]. The concept of fault rings and fault chains
can be extended to faults with more complex shapes such
as <, ‘I’, and ‘T”, which may occur when multiple adjacent
blocks are faulty. In such cases, fault rings and chains are
not regular. Our preliminary investigations indicate that
the proposed techniques can be applied to such faults with
some changes. We are currently working on this problem.

References

[1] A. Agarwal et al. The MIT Alewife machine: A large-
scale distributed multiprocessor. In Proc. of Workshop

on Scalable Shared Memory Multiprocessors. Kluwer
Academic Publishers, 1991.

K. Bolding and L. Snyder. Overview of fault handling
for the chaos router. In Proceedings of the 1991 IEFE
International Workshop on Defect and Fault Toler-
ance in VLSI Systems, pages 124-127, 1991.

R. V. Boppana and S. Chalasani. A comparison of
adaptive wormhole routing algorithms. In Proc. 20th
Ann. Int. Symp. on Comput. Arch., pages 351-360,
May 1993.

R. V. Boppana and S. Chalasani. Fault-tolerant
wormhole routing algorithms for mesh networks.
Technical Report CS-94-2, Div. of Math and CS, Univ.
of Texas at San Antonio, May 1994.

S. Borkar et al. iWarp: An integrated solution to
high-speed parallel computing. In Proc. Supercom-
puting ’88, pages 330-339, 1988.

10

[6] S. Chalasani and R. V. Boppana. Fault-tolerant
wormhole routing in tori. In Proc. 8th ACM Int. Conf.
on Supercomputing, July 1994.

A. A. Chien and J. H. Kim. Planar-adaptive routing:
Low-cost adaptive networks for multiprocessors. In

Proc. 19th Ann. Int. Symp. on Comput. Arch., pages
268-277, 1992.

W. J. Dally. Virtual-channel flow control. IFEF
Trans. on Parallel and Distributed Systems, 3(2):194—
205, Mar. 1992.

W. J. Dally and H. Aoki. Deadlock-free adaptive
routing in multicomputer networks using virtual chan-
nels. TEFE Trans. on Parallel and Distributed Sys-
tems, 4(4):466-475, April 1993.

W. J. Dally and C. L. Seitz. Deadlock-free message
routing in multiprocessor interconnection networks.
IEEE Trans. on Computers, C-36(5):547-553, 1987.

J. Duato. A new theory of deadlock-free adaptive
routing in wormhole networks. IFEFE Trans. on Par-
allel and Distributed Systems, 4(12):1320-1331, Dec.
1993.

S. A. Felperin, L. Gravano, G. D. Pifarré, and J. L.
Sanz. Routing techniques for massively parallel com-
munication. Proceedings of the IEEE, 79(4):488-503,
1991.

P. T. Gaughan and S. Yalamanchili. Pipelined circuit-
switching: A fault-tolerant variant of wormhole rout-
ing. In Proc. Fourth IFEFE Symp. on Par. and Distr.
Processing, pages 148-155, 1992.

C. J. Glass and L. M. Ni. The turn model for adaptive
routing. In Proc. 19th Ann. Int. Symp. on Comput.
Arch., pages 278287, 1992.

C. J. Glass and L. M. Ni. Fault-tolerant worm-
hole routing in meshes. In Twenty- Third Annual Int.
Symp. on Fault-Tolerant Computing, pages 240-249,
1993.

K. D. Gunther. Prevention of deadlocks in packet-
switched data transport systems. IEFE Trans. on
Communications, COM-29(4):512-524, April 1981.

P. Kermani and L. Kleinrock. Virtual Cut-Through:
A New Computer Communication Switching Tech-
nique. Computer Networks, 3:267-286, 1979.

[18] S. L. Lillevik. The Touchstone 30 Gigaflop DELTA
prototype. In Sixth Distributed Memory Computing
Conference, pages 671-677, 1991.

M. D. Noakes et al. The J-machine multicomputer:
An architectural evaluation. In Proc. 20th Ann. Int.
Symp. on Comput. Arch., pages 224-235, May 1993.
A. L. Narasimha Reddy and R. Freitas. Fault toler-
ance of adaptive routing algorithms in multicomput-
ers. In Proc. Fourth IEEF Symp. on Par. and Distr.
Processing, pages 156-161, 1992.

J. Y. Ngai and C. L. Seitz. A framework for adap-
tive routing in multicomputer networks. In Proc.
First Symp. on Parallel Algorithms and Architectures,
pages 1-9, 1989.

W. Oed. The cray research massively parallel pro-
cessor system, CRAY T3D. Technical report, Cray
Research Inc., Nov. 1993.

C. Seitz. Concurrent architectures. In R. Suaya and
G. Birtwislte, editors, VLSI and Parallel Computa-
tion, chapter 1, pages 1-84. Morgan-Kaufman Pub-
lishers, Inc., San Mateo, California, 1990.

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[19]

[20]

[21]

[22]

[23]

