

DESIGN AND ANALYSIS OF

ADAPTIVE ROUTING AND TRANSPORT PROTOCOLS
IN MOBILE AD HOC NETWORKS

APPROVED BY SUPERVISING COMMITTEE:

Dr. RgendraV. Boppana, Supervising Professor

Dr. Thomas Bylander

Dr. Turgay Korkmaz

Dr. Kay A. Rabbins

Dr. Parimal Patel, Outside Member

Accepted:

Dean of Graduate Studies

Dedication

This dissertation is dedicated to my parents, Wilson L. Dyer, Sr. and Jane H. Dyer, who taught me the value
of education and of hard work and perseverance; and to my wife, Susie Dyer, without whose love, support,

and encouragement this work could not have been completed.

DESIGN AND ANALYSIS OF

ADAPTIVE ROUTING AND TRANSPORT PROTOCOLS
IN MOBILE AD HOC NETWORKS

by

THOMAS DAVID DYER, M.S.

DISSERTATION
Presented to the Graduate Faculty of
The University of Texas at San Antonio
in Partial Fulfillment
of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Sciences
Department of Computer Science
December 2002

Acknowledgements

I would like to express my sincere gratitude to my advisor, Dr. Rajendra V. Boppana, for his guidance,
encouragement, and patience. Working with Dr. Boppana has been a very rewarding experience, and | am
truly indebted to him. | would also like to thank Dr. Kay Robbins, Dr. Thomas Bylander, Dr. Turgay
Korkmaz, and Dr. Parimal Patel for serving on my final Ph.D. committee. Their criticism and suggestions
have been invaluable.

Finally, I would like to acknowledge the support of my employer, the Southwest Foundation for Biomed-
ical Research. | am especially grateful for the encouragement and support | have received from Dr. John

Blangero, Dr. Sarah Williams-Blangero, Dr. Jean MacCluer, and Dr. Bennett Dyke.

December 2002

DESIGN AND ANALYSIS OF
ADAPTIVE ROUTING AND TRANSPORT PROTOCOLS
IN MOBILE AD HOC NETWORKS

Thomas David Dyer, Ph.D.
The University of Texas at San Antonio, 2002

Supervising Professor: Dr. Rajendra V. Boppana

A mobile ad hoc network (MANET) is a collection of mobile computing devices that communicate
using wireless links, forming a multihop network without the use of network infrastructure or centralized
administration. In this dissertation, we examine routing and transport protocol performance in MANETS
and we explore ways of improving that performance.

It is well known that TCP performance in MANETS suffers from TCP’s inability to distinguish packet
losses due to congestion from losses caused by mobility-induced route failure. We propose a heuristic in
which the TCP sender interprets multiple timeouts for the same packet as an indication that the route to the
receiver is broken. Rather than doubling the retransmit timeout interval (RTO) on each consecutive timeout,
the sender fixes the RTO. The increased rate of packet retransmissions stimulates route repair, reducing the
time taken to repair the broken route and re-establish the flow of TCP packets.

UDP performance in MANETS is also problematic. Using simulations, we show that rapid topology
changes prevent UDP from fully utilizing available network capacity. To address this issue, we propose an
adaptive unreliable packet delivery service, the Adaptive Datagram Protocol. ADP uses acknowledgements
from the receiver to clock the transmission of new packets. The sender buffers packets when the application’s
sending rate exceeds network capacity. If the buffer becomes full, the sender drops excess packets rather
than injecting them into the network where they may cause contention. These features enable ADP to attain
higher throughputs and use network resources more efficiently than UDP.

We have conducted extensive simulations over a wide range of network loads to test the applicability
of our transport protocol proposals to three MANET routing protocols. The network loads were varied to

include FTP file transfers, variable-bit-rate video streams, and HTTP traffic. Our results demonstrate that

the fixed-RTO heuristic significantly improves TCP performance for routing protocols which respond well
to route stimulation, and in situations where route repairs are prolonged or difficult. Our results also show
that, in addition to providing higher throughput and greater efficiency than UDP, ADP works well with TCP

to achieve an equitable sharing of available bandwidth.

Vi

Contents

Acknowledgements
Abstract
List of Tables

List of Figures

Introduction
1.1 Wireless MAC layer. e
1.2 MANET routing protocols e
1.3 Transport layer protocols e
1.4 Contributions of thisthesis
1.4.1 Routing protocol design
1.42 TCPperformance o i e e e
1.4.3 Transport protocol design
1.4.4 Performance analysis e
1.5 Organization of the dissertation
Background
2.1 Routing protocols e e
2.1.1 Proactive protocols e
2.1.2 On-demand protocols
2.1.3 Otherrouting protocols e
2.2 Transportprotocols e
221 TCPfundamentals
2.2.2 TCP performance in 1-hop wirelessnetworks
223 TCPperformance inMANETS
2.24 UDP performance in MANETS i
2.3 Performance analysis
2.3.1 Experimental testbeds
2.3.2 Simulation methodology
2.3.3 Mobility scenarios e
Adaptive Distance Vector
3.1 Adapting the size of routing updates to network load
3.2 Adapting the frequency of routing updates to network conditions
3.21 Routingtablevariables
3.2.2 Node-level variables

vii

5

3.23 Tunableconstants e 36

3.24 Sendingroutingupdates 37
3.25 Processing received updates 39
3.2.6 Processingdatapackets. 41
3.2.7 Computing the trigger threshold 41
3.3 Tradeoffs in ADV update strategy 42
3.4 ADVperformance analysis e 43
3.4.1 Experimental methods 43
3.4.2 Steady-state behavior of a high mobility network 46
3.4.3 Transient behavior of a high mobility network 52
3.5 Tuning ADV for TCP performance 55
3.6 Concludingremarks e 56
Improving TCP Performance in Mobile Ad hoc Networks 58
4.1 Techniques for improving TCP performance 58
411 TCPlayermechanisms o i i e 59
4.1.2 Routing layer mechanisms e 60
4.1.3 Proposed TCPsendersideoptions 62
4.2 TCPperformance analysis 65
4.2.1 Experimental methods 66
4.2.2 Performance results for 1 TCP connection, 66
4.2.3 Comparison of different TCP options 71
43 TCPReno-F e 73
4.3.1 Average case with no background traffic, 74
4.3.2 Average case with background traffic 76
433 WOISECASE v e e 77
4.4 Analysis of TCP performance for multiple TCP connections 79
4.4.1 Comparison of throughputs for different TCPoptions 79
442 TCPRenovs. TCPReno-F. 81
443 UDPperformance e 84
4.4.4 Performance impact of DSR route replies fromcache 86
4,5 Effect of the buffer refresh time on TCP performance 87
4.6 Concludingremarks e e e e e 90
An Adaptive Datagram Protocol for Mobile Ad Hoc Networks 92
5.1 Adaptive Datagram Protocol 94
5.1.1 Implementing ADP e 96
5.1.2 Fixed transmit timeout interval 99
52 ADPperformance analysis e 100
5.2.1 Experimental methods 100
5.2.2 Simulation of videotraffic 100
523 Performanceresults. 101
524 Network reSoUrCe USAgE . . . v v v v v v e e e e e e e e e 106
53 Concludingremarks e 106

viii

6 Multimedia Traffic in Mobile Ad hoc Networks 109

6.1 Multimediatraffic e 109
6.1.1 Simulationof Webtraffic. 110

6.2 Performance analysis e 111
6.2.1 Experimental methods 111

6.2.2 Performance results for HTTP trafficonly 112

6.2.3 Performance results for combined multimedia traffic 116

6.3 Concludingremarks e 121

7 Conclusions 122
7.1 Routing protocol design e e e 122
7.2 Improving TCP performance 0 i e 123
7.3 Adaptive Datagram Protocol 126
7.4 Performance analysis 127
7.5 Futureresearch directions e 128

A Additional ADV Performance Analysis Results 130
A.1l Steady state behavior of a high mobility network 130
A.1.1 50-node 1500m x 300m network, 25 connections 130

A.1.2 100-node 2600m x 600m network, 25 connections 132

A.1.3 100-node 2600m x 600m network, 100 connections 133

A.2 Steady state behavior of a low mobility network 135
A.2.1 100-node 2600m x 600m network, 25 connections 135

A.2.2 100-node 2600m x 600m network, 100 connections 136

A.3 Transient behavior of a high mobility network 138

B Additional TCP Performance Analysis Results 141
B.1 Performance results for 1 TCP connection 141
B.2 Performance results for multiple TCP connections 146
B.3 Effect of buffer refresh time on TCP performance 149
Bibliography 151
Vita 156

List of Tables

11

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4

5.1
5.2
5.3

5.4

5.5
5.6
5.7
5.8

7.1
7.2

Expected throughput for 1 TCP connection as a function of the number of hops from sender
TOTECRIVEL. . . . o e

Classification of MANET routing protocols.

Additional fields in a routing table entry atanode inADV.
Node-level routing variables maintained in ADV.
Fields in a routing update entry transmitted in ADV.
Conditions and actions for updating the routing table entries upon receiving an update. . . .
Values of various parameters used in the DSDV protocol.
Values of various parameters used in the ADV protocol.
Values of various parameters used in the AODV protocol.
Values of various parameters used in the DSR protocol.

Classification of TCP performance improvement techniques.
Percent increases in throughput relative to TCP Reno for 50 Kbps 10-CBR background. . . .
Percent increases in throughput relative to TCP Reno for 50 Kbps 40-CBR background. . . .
DSR performance with route replies from cache turnedonandoff.

Transport-layer throughput in Mbps for 10 connections with no background traffic.
Fieldsinan ADP packet header. e
Performance for 1 connection with TCP-like windowing algorithm and a 100 Kbps back-

ground load from 10 CBR SOUICES. v v v i e i e e e e e e e
Performance for 1 connection with simple ACK-clocking and a 100 Kbps background load

from 10 CBRSOUICES. v v o o o e e e e e e e e e e
Effect of fixing the transmit timeout interval on throughput (Mbps).
Effect of fixing the transmit timeout interval on frame delivery fraction (%).
Frame-size distributions for simulated video stream.
Performance and MAC-layer statistics for 10 video connections.

Ranking of TCP Reno throughputs obtained using each routing protocol.
Ranking of TCP Reno-F throughputs obtained using each routing protocol.

38
40
44
44
44
45

58
68
68
87

List of Figures

11
1.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

3.12

4.1
4.2
43
4.4
45
4.6
4.7

4.8

Protocol layers in a mobile ad hoc network. 2
Capacity of a single transport-layer connection in a simulated ad hoc network 6
Packet latency and delivery fraction for 25 connections in a 50-node network on a 1000m x

1000m field. 47
Packet latency and delivery fraction for 50 connections in a 50-node network on a 1000m x

1000m field. 48
Throughput for 25 connections in a 50-node network on a 1000m x 1000m field. 49
Throughput for 50 connections in a 50-node network on a 1000m x 1000m field. 50

IP-layer routing overhead for 25 connections in a 50-node network on a 2000m x 1000m field. 50
IP-layer routing overhead for 50 connections in a 50-node network on a 1000m x 1000m field. 51
Packet latency and delivery fraction for transient case with 25 Kbps max traffic in a 50-node

network on a 1000m x 1000m field. 53
Throughput for transient case with 25 Kbps max traffic in a 50-node network on a 1000m x
1000mfield. 53
IP-layer routing overhead for transient case with 25 Kbps max traffic in a 50-node network
onal1l000m x 1000m field. 54
Packet latency and delivery fraction for transient case with 100 Kbps max traffic in a 50-node
network on a 1000m x 1000m field. 54
Throughput for transient case with 100 Kbps max traffic in a 50-node network on a 1000m
x1000m field. e e 54
IP-layer routing overhead for transient case with 100 Kbps max traffic in a 50-node network
onal1l000m x 1000m field. 55
TCP data packet/ACK transmission diagram showing tardy ACKs arriving during the hold-
downtimerinterval. 63
Simplified TCP state diagram illustrating normal operation of the TCP Reno protocol. 64
Simplified TCP state diagram illustrating the fixed-RTO protocol modification. 65
Connect times, throughputs, goodputs, and routing overhead for 1 TCP connection with a
50 Kbps background load from 10 CBR connections. 67
Connect times, throughputs, goodputs, and routing overhead for 1 TCP connection with a
50 Kbps background load from 40 CBR connections. 68
Connect times, throughputs, and routing overhead for 1 TCP Reno connection with a 10-
CBRbackground. e 71
Connect times, throughputs, and routing overhead for 1 TCP Reno-F connection with a
10-CBR background. e 72
Connect times, throughputs, and routing overhead for 1 TCP Reno connection with a 40-
CBRbackground. e 72

Xi

4.9

4.10

411

4.12

4.13

414

4.15

4.16

417

4.18

4.19

4.20

421

4.22

4.23

4.24

4.25

4.26

4.27

5.1
5.2
5.3
5.4
5.5
5.6

5.7

Connect times, throughputs, and routing overhead for 1 TCP Reno-F connection with a
40-CBR background. e e 72
Throughput compared to capacity for a TCP Reno and TCP Reno-F connection with the
AQODV routing protocol and no background traffic. 73
AODV congestion window sizes and route repair times for 1 TCP Reno connection with no
background trafficload. 75
AODV congestion window sizes and route repair times for 1 TCP Reno-F connection with
no background trafficload. 75
Throughput compared to capacity for a TCP Reno and TCP Reno-F connection with the
AODV routing protocol and a 100 Kbps background load from 10 CBR connections. 77
AODV congestion window sizes and route repair times for 1 TCP Reno connection with a
50 Kbps background load from 40 CBR connections. 78
AODV congestion window sizes and route repair times for 1 TCP Reno-F connection with
a 50 Kbps background load from 40 CBR connections. 78
ADV congestion window sizes and route repair times for 1 TCP Reno connection with a 50
Kbps background load from 40 CBR connections. 78
ADV congestion window sizes and route repair times for 1 TCP Reno-F connection with a
50 Kbps background load from 40 CBR connections. 78
Combined throughputs for multiple TCP connections with a 100 Kbps, 10-CBR background. 80
Combined throughputs for multiple TCP connections with a 100 Kbps, 40-CBR background. 80
Connect times, throughputs, goodputs, and routing overhead for TCP Reno with a 100 Kbps
10-CBR background. e 82
Connect times, throughputs, goodputs, and routing overhead for TCP Reno-F with a 100
Kbps 10-CBR background. e e 83
CBR packet latencies for TCP Reno and Reno-F with a 100 Kbps background load from 10
CBRCONNECLIONS o 85
CBR packet delivery fractions for TCP Reno and Reno-F with a 100 Kbps background load
from 10 CBR CONNECLIONS. o o o o e e e e e e e e e e 85
Connect time for ADV for 5 and 10 TCP connections with a 100 Kbps background load
from 10 CBRSOUICES. v o o o o e e e e e e e e 88
Throughput for ADV for 5 and 10 TCP connections with a 100 Kbps background load from
10 CBRSOUICES. o o o e e 89
CBR packet latency for ADV for 5 and 10 TCP connections with a 100 Kbps background
load from 10 CBRSOUICES. 89
CBR packet delivery fraction for ADV for 5 and 10 TCP connections with a 100 Kbps
background load from 10 CBRsources. e 90
Throughput compared to capacity for a TCP Reno-F connection and a 1.46 Mbps CBR flow
with no background trafficload. 93
Throughput compared to capacity for a 300 Kbps CBR flow and a 500 Kbps CBR flow with
no background traffic load. 94
ADPpacketflow. 95
ADP congestion Window. e 97
Video frame pattern. e 101
Frame delivery fraction and throughput for UDP and ADP with a varying number of video
flows and a 100 Kbps background load from 10 CBRsources. 102
Throughput for a varying number of FTP and video connections with a 100 Kbps back-
ground load from 10 CBR SOUICES. v v i e e e e e e e e e e 103

Xii

5.8
5.9
5.10
5.11
5.12
5.13

5.14

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

Al

A2
A3
A4

A5
A6
AT

A8
A9

Frame delivery and network drop rates for 1 video connection with ADV and AODV. 103

Frame delivery and network drop rates for 2 video connections with ADV and AODV. 104
Throughput for 1 and 2 video connections with a 100 Kbps background load from 10 CBR

SOUICES. o & v v v e e e e et e e e 104
Frame delivery and network drop rates for 5 video connections with ADV and AODV. 104
Frame delivery and network drop rates for 10 video connections with ADV and AODV. . . . 105
Throughput for 5 and 10 video connections with a 100 Kbps background load from 10 CBR

SOUICES. + & v v v e e e e e e e e e e e e 105
Throughput of 10 VBR connections using ADPand UDP. 107
Client-server request-reply cycle in a simulated Web session. 110

Mean service time and throughput for 10 HTTP connections with no CBR background traffic.112
Mean service time and throughput for 10 HTTP connections with a 100 Kbps background

load from 10 CBRSOUICES. 112
Service times for 10 HTTP server-client connections using TCP Reno and TCP Reno-F with
a 100 Kbps background load from 10 CBRSOUICES. v v v v v i e e 114
Response times for 10 HTTP server-client connections using TCP Reno and TCP Reno-F
with a 100 Kbps background load from 10 CBR sources. 114
CBR packet latency and throughput for 10 HTTP connections with a 100 Kbps background
load from 10 CBRSOUICES. 116
Combined throughputs for ADV and AODV for 10 connections with HTTP over TCP Reno
and no CBR background traffic. 117
Combined throughputs for ADV and AODV for 10 connections with HTTP over TCP Reno-
F and no CBR background traffic. 117
Combined throughputs for ADV and AODV for 10 connections with HTTP over TCP Reno
and 100 Kbps from 10 CBR SOUICES. v v v o i i e e e e e e e e e e 118
Combined throughputs for ADV and AODV for 10 connections with HTTP over TCP Reno-
Fand 100 Kbps from 10 CBRSOUICES. o v i i e 118
Mean HTTP service time for ADV and AODV for 10 connections with no CBR background
traffic. 120
Mean HTTP service time for ADV and AODV for 10 connections with 100 Kbps from 10
CBRSOUICES. o e 120
Packet latency and delivery fraction for 25 connections in a 50-node network on a 1500m x
300mfield. 131
Throughput for 25 connections in a 50-node network on a 1500m x 300m field. 131

IP-layer routing overhead for 25 connections in a 50-node network on a 1500m x 300m field. 131
Packet latency and delivery fraction for 25 connections in a 100-node network on a 2200m
X 600mfield. 132
Throughput for 25 connections in a 100-node network on a 2200m x 600m field. 132
IP-layer routing overhead for 25 connections in a 100-node network on a 2200m x 600m field.133
Packet latency and delivery fraction for 100 connections in a 100-node network on a 2200m

x600mfield. 133
Throughput for 100 connections in a 100-node network on a 2200m x 600m field. 134
IP-layer routing overhead for 100 connections in a 100-node network on a 2200m x 600m

field. . . 134

A.10 Packet latency and delivery fraction for 25 connections in a low-mobility 100-node network

ona2200m x 600m field. 135

A.11 Throughput for 25 connections in a low-mobility 100-node network on a 2200m x 600m field. 135

Xiii

A.12 IP-layer routing overhead for 25 connections in a low-mobility 100-node network on a

2200m x 600m field. 136
A.13 Packet latency and delivery fraction for 100 connections in a low-mobility 100-node network

onaz2200m x 600mfield. 136
A.14 Throughput for 100 connections in a low-mobility 100-node network on a 2200m x 600m

field. . . o 137
A.15 IP-layer routing overhead for 100 connections in a low-mobility 100-node network on a

2200m x 600m field. 137
A.16 Packet latency and delivery fraction for transient case with 200 Kbps max traffic in a 50-node

network on a 1000m x 1000m field. 138
A.17 Throughput for transient case with 200 Kbps max traffic in a 50-node network on a 1000m

x1000m field. 138
A.18 IP-layer routing overhead for transient case with 200 Kbps max traffic in a 50-node network

onal1l000m x 1000m field. 139
A.19 Packet latency and delivery fraction for transient case with 300 Kbps max traffic in a 50-node

network on a 1000m x 1000m field. L 139
A.20 Throughput for transient case with 300 Kbps max traffic in a 50-node network on a 1000m

x1000m field. 139
A.21 IP-layer routing overhead for transient case with 300 Kbps max traffic in a 50-node network

onal1l000m x 1000m field. 140
B.1 Connect times, throughputs, goodputs, and routing overhead for 1 TCP connection with a

100 Kbps background load from 10 CBR connections. 142
B.2 Connect times, throughputs, goodputs, and routing overhead for 1 TCP connection with a

100 Kbps background load from 40 CBR connections. 143
B.3 Connect times, throughputs, goodputs, and routing overhead for 1 TCP connection with a

200 Kbps background load from 10 CBR connections. 144
B.4 Connect times, throughputs, goodputs, and routing overhead for 1 TCP connection with a

200 Kbps background load from 40 CBR connections. 145

B.5 Combined throughputs for multiple TCP connections with a 200 Kbps, 10-CBR background. 146
B.6 Combined throughputs for multiple TCP connections with a 200 Kbps, 40-CBR background. 146
B.7 Connect times, throughputs, goodputs, and routing overhead for TCP Reno with a 100 Kbps

40-CBR background. e e 147
B.8 Connect times, throughputs, goodputs, and routing overhead for TCP Reno-F with a 100

Kbps 40-CBR background. 148
B.9 CBR packet latencies for TCP Reno and Reno-F with a 100 Kbps background load from 40

CBRCONNECLIONS 148
B.10 CBR packet delivery fractions for TCP Reno and Reno-F with a 100 Kbps background load

from 40 CBR CONNECLIONS. o o o 149
B.11 Connect times for ADV for 5 and 10 TCP connections with a 200 Kbps background load

from 10 CBRSOUICES. v v o o o e e e e e e e e e e e 149
B.12 Throughput for ADV for 5 and 10 TCP connections with a 200 Kbps background load from

10 CBRSOUICES. o o o e e 150
B.13 CBR packet latency for ADV for 5 and 10 TCP connections with a 200 Kbps background

load from 10 CBRSOUICES. 150
B.14 CBR packet delivery fraction for ADV for 5 and 10 TCP connections with a 200 Kbps

background load from 10 CBRsources. 150

Xiv

Chapter 1

| ntroduction

In recent years, the use of the Internet and of wireless communications has risen dramatically. Surfing the
World Wide Web and chatting on a cellular phone have become commonplace activities. With the advent
of wireless networks and the availability of portable computers such as laptops and handheld devices, the
day is coming in the not too distant future when applications that require networking can be used “anytime,
anywhere” [52].

Wireless networks have been around since the late 1960s when the Aloha packet radio network was
first developed [1]. In the last decade, wireless networks have been adapted to enable mobility, leading to
their increasing popularity. The most common type of wireless network consists of mobile devices which
communicate with base stations that are the gateways to a fixed network infrastructure. As a mobile unit
moves about, its link to the wired portion of the network is handed off from one base station to another, thus
providing seamless connectivity throughout the network.

Another type of wireless network, called a mobile ad hoc network (MANET), does not rely on fixed in-
frastructure. Rather, mobile units form a multi-hop wireless network with no fixed routers and no centralized
administration. Network nodes function as routers, discovering and maintaining routes to other nodes in the
network. Originally developed by the military for use in battlefield situations [37], MANETS are suited for
applications ranging from emergency disaster relief to networking laptops in a conference room.

The effort to extend the Internet into the wireless realm is well under way. As the capabilities of mobile
devices and the capacity of wireless communications increase, MANET users will want to run many of

the same networking applications to which they have become accustomed on the wired Internet. They will

Transport TCP rcp
Layer
Network P P P P
Layer
MAC/Physica —
A Source Hos Mobile Hos Mobile Hogt Desination
e Hos

Figure 1.1: Protocol layers in a mobile ad hoc network. TCP = Transmission Control Protocol, IP = Internet
Protocol.

expect seamless operation of everything from E-mail and Web browsing to Internet telephony and streaming
video. The key to successfully meeting this demand will be the performance of Internet protocols over
MANETS.

In the following sections, we give a brief description of some of the elements of Internet Protocol (IP)
[56] networking in MANETS. IP networking is typically viewed as consisting of layers as illustrated in
Figure 1.1. We start from the ground up, so to speak, beginning with the physical layer and how access to
this layer is controlled in MANETS. Next we consider the network layer, the level at which IP is concerned
with routing packets from one MANET node to another. Finally we discuss the transport layer, the level at
which data can be delivered from an application running on a local host to another application running on a
remote host elsewhere in the Internet. At each level, we note the work that has been carried out and touch

upon some of the outstanding issues that are topics of ongoing research.

1.1 WireessMAC layer

Wireless networks can be built using a variety of physical media, for example radio transmissions or infrared

signals. Regardless of the physical media employed, network interfaces must follow a Medium Access Con-

trol (MAC) protocol. MAC protocols operate at the link layer, the networking layer responsible for transmit-
ting data across a single, direct network link. We use the terms link layer and MAC layer interchangeably,
although in a strict layerist view they are not identical.

Wireless links are lossy for a variety of reasons including path loss, fading, noise, and interference.
Reliable link-layer protocols are used to hide this lossiness from the higher layers in the network protocol
stack [9]. These protocols use forward error correction (FEC) or acknowledgement repeat request (ARQ)
mechanisms to implement local error recovery. Hybrid protocols, such as AIRMAIL [4], employ both
techniques.

For MANETS, the most commonly used MAC protocol is IEEE 802.11 with Distributed Coordination
Function (DCF) [32], which is a CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)
protocol. As in the Ethernet protocol for wired networks [31], 802.11 devices sense whether the medium
is busy, waiting until the link is idle before transmitting. However, because wireless devices have a lim-
ited transmission range, not all nodes in a MANET will be in reach of each other. Therefore, a collision
avoidance scheme is employed in which two nodes wishing to communicate must successfully complete an
exchange of request-to-send (RTS) and clear-to-send (CTS) messages before any data is transmitted. Other
nodes that hear this exchange will learn that the channel is going to be busy and for how long.

After a successful packet transmission, the receiving node sends an acknowledgement to the sender. If
the sender does not receive this acknowledgement, it retransmits the packet several times before declaring
the link to be broken. Thus, 802.11 is able to provide reliable packet transmission provided links are bi-
directional. This scheme is used for unicast packet transmissions only. For broadcast transmissions, the

wireless device simply waits for an idle channel and then transmits. Hence, broadcasts are not reliable.

1.2 MANET routing protocols

In an IP internetwork, packets are delivered from one network to another via routers. The routers learn
about paths through the internetwork by means of IP routing protocols, such as RIP [27], OSPF [50], or

BGP [60]. Although these routing protocols were designed to autonomously adapt to changes and failures

in the network infrastructure, they are unable to cope with the rapid topology changes possible in a mobile
ad hoc network. For this reason, an Internet Engineering Task Force (IETF) working group has been formed
to develop a routing framework for IP protocols in MANETS [33].

A number of routing protocols have been proposed and are currently being considered by the MANET
working group. These protocols may generally be characterized as proactive or on-demand. In proactive
algorithms, routes are maintained to every node in a network, and routing information is disseminated in
periodic routing updates [18, 54]. Because routes are immediately available, proactive protocols exhibit low
packet latency. However, this comes at the price of the higher network overhead incurred by the propagation
of routing updates, even when there is no current need for this information.

On-demand, or reactive, protocols, on the other hand, discover and maintain routes on an as-needed
basis [36, 51, 53]. Because only actively used routes are maintained, the routing overhead may be less than
that of a proactive protocol. However, the need for route discovery means that packet latency will increase,
perhaps significantly. Hybrid protocols have also been proposed which combine on-demand and proactive
approaches. For example, ZRP [26] adopts an approach in which MANETSs are divided into zones. A
proactive protocol is used for routing packets within a zone, while an on-demand protocol is employed for
interzone routing.

A reasonable tactic in MANET routing may be to store multiple routes between a source and a desti-
nation. When a route breaks, an alternate route is immediately available. Care must be taken, however, to
purge stale routing information, since the use of stale routes wastes network resources, e.g. bandwidth and
battery power, and results in poor performance. Various route caching strategies have been studied [30, 48].

A number of performance evaluations of MANET routing protocols have been presented in the literature.
Simulation-based performance comparisons have been made of various proactive and on-demand protocols
[12, 13, 19, 34, 43]. Using simulation, these studies measured packet latency, throughput, packet delivery
fraction, and routing overhead for UDP traffic generated by constant-bit-rate (CBR) sources. The offered
traffic, number of nodes, and node speed were varied, and different mobility scenarios were considered.

The design of routing protocols for ad hoc networks is challenging. As pointed out in [52], ad hoc

networks might be considered the “acid test” of network protocol design. Potentially, an ad hoc routing

Table 1.1: Expected throughput for 1 TCP connection as a function of the number of hops from sender to
receiver. TCP packet size = 1460 bytes.

| Number of hops | Throughput (Mbps) |
1 1.463
0.729
0.4844
0.3399
0.2464
0.2052
0.1981
0.1918
0.1853
0.1824

OO N[O OB WN

=
o

protocol design might prove to be more scalable than the protocols currently in use in the global Internet.

For these reasons, routing protocols for ad hoc networks will continue to be of considerable interest.

1.3 Transport layer protocols

In the Internet, TCP [57] is the de facto standard protocol for reliable packet delivery. Bulk data transfers
via FTP, interactive applications like Telnet, and HTTP for Web traffic, all utilize TCP at the transport layer.
Therefore, TCP performance is a major determinant of how well these applications perform in wireless
networks. At the same time, the use of multimedia and real-time applications requires that MANETS provide
good UDP [55] performance. With a realistic mix of applications, TCP connections and UDP flows can both
be expected to compete for MANET resources.

In a MANET, the maximum throughput than can be achieved for a transport-layer connection, in the
absence of contention from competing traffic, depends on the number of routers (mobile hosts) that must be
traversed between sender and receiver. Each link traversal from router to router is called a hop. Table 1.1
shows the expected throughput for a TCP connection as a function of the number of hops. These numbers
are taken from a similar table in [29]. In Figure 1.2, we have used this data to estimate the capacity of a
single transport-layer connection as it changes over time in a simulated MANET.

The seminal paper by Caceres and Iftode [15] demonstrated that networks that include wireless links

15 b

Capacity (Mbps)

0 200 400 600 800 1000
Simulation Time (sec)

Figure 1.2: Capacity of a single transport-layer connection in a simulated ad hoc network. Estimated using
achievable throughput (in the absence of contention) as a function of the number of hops in the shortest path
from sender to receiver.

and mobile hosts suffer from delays and packet losses unrelated to network congestion. In MANETS, node
mobility can cause routes to break, with the result that packets are delayed in buffers waiting for a new
route, or are simply dropped. MANET routing protocols are designed to repair routes quickly, but it is
essential that the TCP layer react appropriately to the interruptions caused by route failures. Whenever
possible, unnecessary invocation of congestion control must be avoided, as these measures will have a
negative impact on TCP performance. Various methods for dealing with this problem have been designed
which involve explicit notification of the TCP sender when a link failure has been detected [9, 17, 29]. The
sender can then take appropriate steps, such as freezing its state (timers and congestion window) until the
route has been re-established. Biaz and Vaidya [11] proposed sender-based heuristics for distinguishing
between packet losses due to congestion and losses due to wireless transmission errors. In addition, it
has been shown that performance gains may be realized in a wireless environment by using TCP protocol
enhancements such as selective acknowledgements [9].

As noted above, MANETS will have to simultaneously support both TCP and UDP traffic. More gen-
erally, with network applications sharing scarce MANET resources, quality of service (QoS) issues will
grow in importance. Systems such as [42] will be needed to provide service differentiation in MANETs. A

discussion of QoS issues in ad hoc wireless networks is given in [16].

A number of studies have analyzed the performance of the TCP protocol over 1-hop wireless links
[6, 7, 8,9, 14, 68]. Using experimental test beds and simulation, these studies measured the increases in
TCP throughput that can be attained by using a variety of techniques including split connections, duplicate
ACKSs, and explicit loss notification. Recent studies have analyzed TCP performance in MANETS. Ahuja et
al. [2] measured the TCP Tahoe throughput yielded by different routing protocols, including AODV [53] and
DSR [36]. The TCP performance problems caused by route failures in an ad hoc network were addressed
by [17, 29], but no comparison was made of different protocols.

To our knowledge, no previous study has presented a performance comparison of MANET routing pro-
tocols that includes network traffic from both UDP and TCP flows, nor have existing studies considered mul-
tiple TCP connections. Moreover, the published evaluations have not reported performance measurements
other than throughput. For example, TCP connect time and routing overhead, both important performance
indicators, have not been considered.

In a recent article by Macker et al. [46], it was pointed out that while routing UDP traffic is an important
first step in providing Internet services over wireless networks, many applications require the end-to-end
reliability and flow control offered by a transport-layer protocol such as TCP. According to the authors,
providing transport layer services that are robust and functional in mobile wireless networks is an area of

research that is still largely unexplored.

1.4 Contributions of thisthesis

This work will make contributions to MANET research in the following areas: routing protocol design,

improving TCP performance in MANETS, transport protocol design, and MANET performance analysis.

1.4.1 Routing protocol design

As we have seen, the design of MANET routing protocols is still an active area of research. Many re-
searchers favor on-demand routing protocols, arguing that on-demand algorithms have lower overhead and
thus will perform better than proactive protocols. Nevertheless, the proactive approach has the advantage

of immediate route availability. Moreover, the routing updates of a proactive algorithm may enable bro-

ken routes to be repaired more quickly. It is natural to wonder if a routing method can be devised that
successfully combines the best features of on-demand and proactive techniques.

Boppana and Konduru have proposed a new routing protocol, Adaptive Distance Vector (ADV), that
is based on a proactive distance vector algorithm [12]. In ADV, however, routes are maintained for active
connections only, and routing updates are triggered adaptively in response to varying network conditions.
Thus, ADV’s routing overhead varies with load and mobility, a characteristic of on-demand algorithms. In
that sense, ADV can be considered to be a hybrid algorithm.

In simulations, ADV has been shown to outperform on-demand protocols for UDP traffic in high node
mobility scenarios [12]. As part of our dissertation work, we have made some modifications to ADV to tune
its TCP performance, and in performance analyses that include TCP as well as UDP traffic, we have shown

that ADV performs as well or better than on-demand algorithms.

1.4.2 TCP performance

Improving TCP performance over MANETS is a major goal of our research. We have proposed a sender-
based heuristic, called fixed RTO, that is designed to address the performance degradation caused by stan-
dard TCP’s congestion control response to packet loss. In our method, the TCP retransmit timeout interval
(RTO) is fixed when retransmit timeouts are interpreted as having been caused by route failures rather than
congestion. As a result, an unnecessary exponential backoff of the RTO is avoided and packet retrans-
missions serve to periodically probe the network for a repaired route. This technique has been shown to
significantly increase TCP throughput for on-demand routing protocols by stimulating their route discovery

We have also investigated the performance impact of a routing protocol’s buffer refresh time. This is the
maximum amount of time that a packet can remain in a routing-layer queue before it is dropped for lack of a
route. We have shown that while a short buffer refresh time is beneficial in terms of packet latency for UDP
flows, a longer time is better for TCP traffic. Therefore, we recommend that different buffer refresh times

be applied to UDP and TCP packets.

1.4.3 Transport protocol design

An interesting observation that we have made is that TCP, despite the overhead of packet acknowledgements,
is able to achieve significantly higher throughput than UDP, a fact that would seem to be at odds with what
is observed in wired networks. This disparity is caused primarily by the relatively rapid topology changes in
a MANET, particularly in the case of high node mobility. Available bandwidth can be highly variable as the
length of the path between sender and receiver changes over the course of a connection. Since the standard
UDP protocol does not conform to available network capacity, it will often be the case that a UDP flow is
either underutilizing a short route with high bandwidth, or attempting to push too much traffic through a
long route with low bandwidth, causing contention and wasting network resources on undelivered packets.
This observation led us to conclude that, in the MANET environment, it is important that a transport
layer protocol be adaptive to network conditions in order to efficiently utilize network capacity. We have
designed a transport protocol, the Adaptive Datagram Protocol (ADP), that employs a simple ACK-clocking
scheme and buffering to provide an unreliable packet delivery service which adapts its flow rate to available

network bandwidth.

1.4.4 Performance analysis

Another goal of our research has been to establish a more extensive set of transport layer performance mea-
surements for MANETS. These performance assessments will help to elucidate strengths and weaknesses in
existing transport layer protocols, and will serve as benchmarks against which new techniques and proposed
protocol modifications can be compared. Of particular interest is the interaction of transport layer protocols,
e.g. UDP and TCP. It cannot be assumed that the behavior of these protocols will be the same in MANETS
as has been observed in wired networks.

To this end, we have conducted an extensive comparison of combined TCP and UDP performance
for three proposed MANET routing protocols, AODV [53], DSR [36], and ADV [12]. Our simulation-
based performance analyses have considered multiple transport layer (TCP and ADP) connections, with
varying background network loads of UDP traffic. For TCP performance analysis, we have generated traffic

from simulated Web (HTTP) connections as well as simulated FTP file transfers. In our analysis of ADP

10

performance, we utilized a variable-bit-rate stream of packets to simulate the flow of frames in a streaming

video connection.

1.5 Organization of the dissertation

The rest of this dissertation is organized as follows: Chapter 2 presents background material and discusses
related work that has been done on MANET routing protocols and transport layer performance in wireless
networks. Chapter 3 describes in detail the Adaptive Distance Vector routing protocol. Chapter 4 describes
and evaluates the mechanisms we propose for improving TCP performance in MANETS. Chapter 5 intro-
duces the new Adaptive Datagram Protocol and analyzes its performance for simulated video traffic. Chapter
6 evaluates the performance of our proposed protocol designs for a mix of simulated video and Web traffic.

Chapter 7 summarizes the work done and presents our conclusions.

Chapter 2

Background

In this chapter we present background material relevant to our proposed research. First, we describe several
of the routing protocols proposed by members of the MANET Working Group. We pay particular attention
to the two on-demand protocols, DSR and AODV, which are subjects of the performance analyses presented
later in this proposal. We then discuss the IP Transmission Control Protocol (TCP). After reviewing the
pertinent details of how TCP operates, we show how the assumptions built into TCP are challenged by the
nature of mobile wireless networks, and consider the ramifications for TCP performance in MANETSs. We
discuss several mechanisms that have been proposed in the literature to deal with these issues and to thereby
improve TCP performance. Finally, we take a look at how performance analysis is conducted in MANET

research.

2.1 Routing protocols

The design of routing protocols for use in mobile ad hoc networks is challenging and is still an open research
area. The protocols that have served the wired Internet well do not translate to the MANET environment. In
particular, the existing IP protocols were not designed to cope with the rapid changes in network topology
that are possible with node mobility. Other factors, such as power management, should also be taken into
account in a successful MANET routing protocol design.

The protocols that are being considered for use in MANETS are varied in their approaches. Although
other ways of categorizing them are certainly possible, one way to group these techniques is by their ap-

proach to route creation and maintenance. Some protocols take a proactive approach, attempting to identify

11

12

the best routes at any time between every pair of nodes in the network. That way, the routes will be available
if and when they are needed. Other protocols take the point of view that maintaining a route that is unused
is wasteful. These methods discover and maintain routes only as needed. Of course, no categorization is
perfect, so we have included a third, catch-all group. The protocols in this group may have proactive or on-
demand features or both, but they also have characteristics that set them apart from the first two categories.

Our classification of routing protocols is summarized in Figure 2.1.

Table 2.1: Classification of MANET routing protocols.

| Algorithm Type | Protocol |

Proactive Destination Sequenced Distance Vector (DSDV)
Optimized Link State Routing (OLSR)

On-demand Dynamic Source Routing (DSR)

Ad hoc On-demand Distance Vector (AODV)
Temporally Ordered Routing Algorithm (TORA)
Other Zone Routing Protocol (ZRP)

Core-Extraction Distributed Ad hoc Routing (CEDAR)
Associativity Based Routing (ABR)

Signal Stability based Adaptivity (SSA)

Adaptive Distance Vector (ADV)

2.1.1 Proactive protocols

The aim of a proactive routing protocol is to maintain up-to-date routes from every node to every other node
in the network. For each destination, a node knows which of its neighbors is the next step, or hop, along the
shortest path to that destination. Routing a packet requires only a simple table lookup, hence these protocols
are also called table-driven. Changes in network topology are propagated throughout the network in updates
in order to maintain a consistent view of the network. Table-driven protocols can be categorized as either
distance vector or link state.

Distance vector algorithms are so called because each node maintains, for each destination, the distance
to that destination from each of the node’s neighbors. The neighbor with the shortest entry in this vector
of distances is chosen to be the next hop to the destination. Choosing next hops in this fashion results in

the shortest path to any destination. A node derives the information in its distance vector via periodically

13

broadcast updates from its neighbors. This method, the Distributed Bellman-Ford (DBF) algorithm [10], is
computationally efficient and straightforward to implement. However, the DBF algorithm is subject to both
short-lived and long-lived routing loops because nodes choose their next hops in a distributed manner using
information that may be out-of-date. Nevertheless, the simplicity of DBF has made it an attractive choice
for implementation, the Routing Information Protocol (RIP) [27] being a well-known example.

In a link state algorithm, each node monitors the status of its link with each of its neighbors. This
information is shared periodically with the other nodes in the network. Thus each node acquires a complete
description of the network topology, and can apply a shortest-path algorithm to choose its next hop for each
destination. Due to propagation delays, the link state information at a particular node may be temporarily
out-of-date, possibly resulting in loop formation. Such loops are short-lived, however, disappearing as
routing updates traverse the network. Link state algorithms are more complex computationally and require
more memory than distance vector algorithms, but they are not subject to the formation of long-lived loops.
The Open Shortest Path First (OSPF) routing protocol [50] in the wired Internet is an example of a link state

protocol.

Destination Sequenced Distance Vector - DSDV

The Destination Sequenced Distance Vector (DSDV) protocol [54] is based on the distance vector algorithm.
DSDV avoids the looping problem of a traditional distance vector method by associating a sequence humber
with each routing table entry. This sequence number, originally assigned and advertised by the destination
node, is used to determine the relative freshness of routing information.

Updates are broadcast periodically to maintain routing table consistency. For each routing table entry
included in an update, a node increments the hop count (metric) by one since a node receiving the update
will be one hop further from the destination. When a node receives an update, it will update the entries in
its routing table for which the corresponding update entry has either a higher sequence number or the same
sequence number but a lower metric. If a node does not receive three consecutive periodic updates from a
neighbor, the link to this neighbor is considered to be broken. Alternatively, the MAC layer may detect link

breakage and report this to the routing agent.

14

A node increments its own sequence number by two each time it broadcasts a routing update. By
convention, these sequence numbers are even. If a node determines that the link to one of its neighbors is
broken, it searches its routing table for routes that use the neighbor as the next hop. In any such entries, the
metric is set to infinity and one is added to the sequence number. Odd sequence numbers, therefore, denote
broken or invalid routes. The use of an odd number ensures that any newer update entry with a valid (not
infinite) metric will have a greater sequence number.

To reduce the potentially large volume of network traffic produced by routing updates, DSDV uses two
different types of update. Full updates are broadcast periodically and include every entry in the routing
table. Smaller, incremental updates include only those routing entries that have changed since the last full
update. Incremental updates are triggered when significant changes are made to the routing table. For
instance, a route invalidation is considered sufficiently important to trigger an update. Nodes keep track
of the weighted average time that routes to a destination fluctuate before an update with the best metric is
received. The broadcast of a routing update is delayed by the length of this settling time, which further
reduces network traffic by eliminating the broadcast of sub-optimal routes. Still, DSDV has been shown
to have very high routing overhead compared to on-demand routing protocols [13]. While the number of
routing packets transmitted per second will be smaller for DSDV, the large number of routing entries in each

update packet accounts for the higher overhead.

Optimized Link State Routing Protocol - OLSR

The Optimized Link State Routing (OLSR) protocol [18] is an extension of the pure link state algorithm,
optimized for use in MANETS. In OLSR, routing overhead is reduced in two ways. First, the flooding
of control traffic is minimized by restricting the set of nodes, called multipoint relays (MPR), which relay
control packets through the network. Every node in the network selects a MPR set from among its neighbors
in such a way that control packets retransmitted by these relay nodes will reach all nodes in its 2-hop neigh-
borhood. Second, the size of control packets is reduced because a node only includes link state information
for the members of its MPR Selector set. This is the set of neighbors which have selected the node to be one

of their multipoint relays.

15

Generally speaking, the smaller the MPR sets are, the more optimal the protocol will be. The frequency
of the periodic updates can be increased to optimize OSLR’s adaptivity to changes in topology. Since only
periodic updates are used, OLSR can accommodate high node mobility. The use of MPRs makes OLSR

particularly well-suited for use in large, dense networks.

2.1.2 On-demand protocols

In contrast to the methods in the previous section, on-demand protocols are not concerned with identifying
and maintaining routes that are not currently in use. In an effort to reduce routing overhead, these techniques
have a reactive nature — “we will create no route before it’s time.” Although discovering routes only when
needed will result in higher packet latencies on average, many researchers believe that on-demand protocols

inherently have lower overhead and higher throughput than proactive methods, and are hence superior.

Dynamic Source Routing - DSR

The Dynamic Source Routing (DSR) protocol uses source routing to deliver data packets. Routes are stored
in a route cache, and each cache entry contains the entire path to be traversed to the destination. When a data
packet is originated, the source places the entire path in the packet header. The intermediate nodes along
this path simply forward the packet to the next hop specified in the header. Avoiding routing loops is clearly
trivial with the use of source routing.

If a source does not have a route to the destination in its cache, it begins a route discovery process by
broadcasting a route request (RREQ) packet. Each node receiving the RREQ searches its own route cache
for a route to the requested destination. If no route is found, it adds its own address to the hop sequence
contained in the RREQ header and broadcasts the RREQ again. A RREQ is tagged with an identification
number that each node records so that it will not broadcast the request more than once.

The RREQ propagates through the network until it reaches either the destination or an intermediate node
which has a route to the destination in its route cache. The RREQ header contains a record of the hops taken

from the source, so this route can be reversed and used to unicast a route reply (RREP) packet back to the

16

source. In the case that bi-directional links cannot be assumed, the RREP is piggybacked on a new request
for a route to the source.

If an intermediate node is unable to forward a data packet to the next hop in its source route, it unicasts
a route error (RERR) packet back to the source informing it of the broken link. The source removes the
broken link from its route cache and all routes containing this hop are truncated at the point of the broken
link. Any intermediate node that forwards the RERR will learn of the broken link and remove it from its
route cache as well. The source can then attempt to use another route to the destination if one exists in the
route cache, or it can initiate a new route discovery.

DSR uses source routing and route caching very aggressively. An intermediate node, upon finding the
next hop link to be broken, can use an alternate route to the destination from its own route cache. A source
receiving a RERR packet piggybacks the RERR on the following RREQ to help clean up the caches of other
nodes which may have the failed link in a cached source route. Nodes are allowed to operate in promiscuous
mode, examining the source route in the header of packets not addressed to it. If an intermediate node
determines that a shorter route exists through itself, it sends this information back to the source in a RREP.
In any case, the intermediate node can use snooping to learn of new source routes and add them to its cache.

There is no mechanism in DSR by which a stale route can be expired, nor is DSR able to choose the
freshest route when multiple choices are available in the cache. If stale routes are used, they may cause
other caches to become polluted. The use of promiscuous listening coupled with node mobility can result in
stale routes polluting caches faster than they can be deleted by route error packets. A detailed discussion of

DSR’s stale route problem is given in [48].

Ad hoc On-demand Distance Vector - AODV

The Ad hoc On-demand Distance Vector (AODV) [53] protocol is based upon the distance vector algorithm,
and like DSDV, it uses sequence numbers to avoid the formation of long-lived routing loops. Unlike DSDV
however, AODV only maintains routes that are in active use. If a source does not have a route to a packet’s
intended destination, it buffers the data packet and broadcasts a RREQ in a manner similar to DSR. The

source includes the most recent sequence number it has for the destination in the RREQ header. The RREQ

17

is propagated through the network until it reaches the destination or a node with a fresh enough route to the
destination, i.e. a route with a higher sequence number than the one in the RREQ. As the RREQ makes
its way through the network, the intermediate nodes which forward the RREQ set up a reverse route to the
source. This is the path along which the RREP from the destination (or other node with a fresh route) will
be unicast back to the source. As the RREP is propagated, the intermediate nodes construct the forward path
from the source to the destination. An important feature of AODV is its use of timers to expire routes which
have not been used for some period of time. This policy is intended to minimize the stale route problem to
which DSR, for example, is subject.

Each node maintains a list of predecessor nodes for each of its routing table entries. This is the set of
neighbors which use the node as a next hop to the destination. When a next hop link breakage is detected
by the MAC layer, the intermediate node which is unable to forward the data packet drops the packet and
sends a RERR to each of its predecessor nodes. Each of these nodes in turn forward it to their predecessors,
effectively erasing all routes which use the broken link.

To reduce the number of RREQ broadcasts required for route discovery, AODV uses an expanding ring
search in the hope that the destination may be nearby. The time-to-live (TTL) field in the IP packet header
is used to limit the number of times the RREQ is re-broadcast. At first only the 1-hop neighbors will receive
the RREQ. If the source does not receive a RREP from one of these neighbors within a certain amount of
time, it broadcasts another RREQ. This time the RREQ will reach all the nodes that are two hops away. If
a reply is still not received, the process continues until the TTL reaches some threshold. At that point the
RREQ is simply flooded throughout the network.

Another AODV optimization is local route repair. If an intermediate node which detects a route failure
is more than half way from the source to the destination, it initiates a route discovery of its own rather than
sending a RERR back to the source. Data packets are buffered during local route repair rather than being

dropped.

18

Temporally Ordered Routing Algorithm - TORA

The Temporally Ordered Routing Algorithm (TORA) [51] is a link reversal protocol designed to operate in
a highly dynamic mobile networking environment. Route discovery is source-initiated and multiple paths
are provided to any destination. With the exception of short-lived loops, routes are guaranteed to be loop-
free. Control messages are localized to a very small number of nodes in the vicinity of a change in network
topology.

When a route is created, nodes use a “height” metric to establish a directed acyclic graph (DAG) rooted
at the destination. Each link in the route is in either an upstream or a downstream direction depending on
the relative height of its endpoints. If node mobility causes the DAG route to break, the height metric will
change for some nodes and the direction of some links may be reversed. The height metric depends on the
logical time of a link failure, so TORA assumes all nodes have synchronized clocks, perhaps by means of a
Global Positioning System.

TORA runs on top of the Internet MANET Encapsulation Protocol (IMEP), which is required to provide
reliable, in-order delivery of control messages. TORA is sensitive to routing packet losses and has been

shown to perform poorly when compared to DSR and AODV [13, 20].

2.1.3 Other routing protocols
Zone Routing Protocol - ZRP

The Zone Routing Protocol (ZRP) [26] is designed to be used in an ad hoc wireless network consisting of
many fast-moving nodes dispersed over a large geographical area. Due to the high degree of node mobility
and the potentially large number of destinations, neither a pure proactive or a pure on-demand method will
be adequate. The long delay and excessive control traffic during route discovery means an on-demand
approach may not be applicable to realtime communication. On the other hand, proactive schemes are not
appropriate because they use a lot of network capacity keeping routing information up-to-date. So, ZRP
takes a hybrid approach, combining both types of routing.

Each node belongs to a routing zone, which is the set of nodes whose minimum distance (in hops) from

19

the node in question is no greater than a specified number, called the zone radius. Within the routing zone,
routes are maintained proactively. Packets destined for a node outside the zone are first propagated to a node
on the periphery of the zone, and from there to a peripheral node of the destination’s routing zone. Interzone
routing is accomplished using an on-demand algorithm. The zone radius is a parameter that is used to adjust
ZRP operation to network conditions. However, the zone radius must be chosen at the time the network is set

up and cannot be changed. Hence, this decision may have a considerable impact on protocol performance.

Core-Extraction Distributed Ad hoc Routing - CEDAR

The primary focus of the Core-Extraction Distributed Ad hoc Routing (CEDAR) [64] protocol is quality of
service routing in small to medium size ad hoc networks with tens to hundreds of nodes. Its goal is robustness
rather than optimality. CEDAR identifies a set of nodes which form a core infrastructure for performing
route computation. Virtual links are established (via tunnels) between nearby core hosts. Each core host is
responsible for routing within its domain and must react to changes in network topology. Route computation
is performed on demand by core hosts using local state information only. Quality of service routing is
achieved by propagating available bandwidth information for stable links in the core infrastructure. CEDAR
adapts quickly to topological changes and satisfies the bandwidth requirements of connection requests with

high probability given that admissible routes exist.

Associativity Based Routing - ABR

Associativity Based Routing (ABR) is a loop-free, on-demand protocol [66]. ABR defines a new metric, the
degree of association stability, and routes are selected on the basis of this metric. Each node periodically
generates a beacon to announce its presence. A node also maintains an associativity table in which it records,
for every other node with which it comes in contact, the number of times a beacon has been received from
that node. This count, called associativity ticks, is the measure of association stability. A high degree of
association stability may indicate low node mobility and vice versa. Paths chosen on the basis of association
stability may not be the shortest possible, but they will tend to be the longest-lived routes and therefore

be broken less frequently. A drawback of ABR is that the beaconing interval must be short enough so

20

as to accurately reflect the spatial, temporal and connectivity state of the mobile hosts. This beaconing

requirement may result in additional power consumption.

Signal Stability based Adaptive Routing - SSA

In Signal Stability based Adaptive Routing (SSA) [21], routes are established on demand and are chosen
on the basis of signal strength between nodes. In addition to a routing table, each node maintains a signal
stability table in which it records the signal strength of its 1-hop neighbors. Signal strength is obtained
from periodic beacons sent by neighboring nodes and each link is classified as either strong or weak. Route
requests are forwarded only if they are received over strong channels. The destination sends a route reply
to the first arriving route request only since that packet most likely arrived over the shortest and/or least

congested path. Link failures are reported to the source which then initiates a new route discovery.

2.2 Transport protocols

Transport layer protocols transform the host-to-host packet delivery service provided by IP into an interpro-
cess communication channel. Adding a level of demultiplexing above the network layer makes it possible for
applications to share the network. This basic service is provided by the Internet’s User Datagram Protocol
(UDP) [55]. In addition, UDP uses a checksum to verify that a message has been correctly transmitted.
Transport layer protocols are also used to turn IP’s best-effort level of service into a reliable packet
delivery service. IP packets may be dropped, reordered, or duplicated on the way from sender to receiver.
By contrast, the Transmission Control Protocol (TCP) [57] enables applications to establish reliable, full-
duplex connections. TCP includes a flow control scheme by which the receiver can limit the rate at which
the sender transmits data. TCP also implements a congestion control mechanism to keep TCP senders from

overloading the network and possibly causing congestion collapse.

2.2.1 TCP fundamentals

In this section, we describe the key components of the TCP protocol that are germane to our work. This is

not intended to be a comprehensive description of TCP, for which [65] is an excellent reference.

21

TCP utilizes a sliding window algorithm to guarantee reliable, in-order packet delivery and to enforce
flow control. The sender can have at most a window’s worth of outstanding packets, i.e. packets for which
no acknowledgement (ACK) of their receipt has yet arrived from the TCP receiver. Since the transmission
of new packets must await the acknowledgement of previously transmitted packets, TCP is said to be self-
clocking. To implement flow control, the receiver includes an advertised window size in each ACK to
inform the sender of the amount of free space left in its buffer. The size of the sender’s window (called
the congestion window) can never exceed the receiver’s advertised window size. We should point out that
TCP keeps track of bytes, not packets, so that window size is actually expressed as a number of bytes. For
simplicity, however, we will talk about windows in terms of packets.

TCP’s acknowledgements are cumulative meaning that the sender is guaranteed that all packets up to
and including the packet being ACKed have been successfully delivered. If a packet is delivered out of
order, the receiver resends the same ACK it sent previously. When the sender receives this duplicate ACK,

it knows that a packet has left the network, but that the left-hand side of its window cannot yet be advanced.

Adjusting the size of the congestion window

If a TCP sender could determine how much network capacity was available for its use at any time, it would
know how many packets it could safely have in flight and could set its window size accordingly. In the
absence of such knowledge, TCP adopts the strategy of probing the network for additional bandwidth by
steadily increasing its window size at the rate of roughly one packet for every window’s worth of ACKs.
This increase in the rate of transmission continues until a packet drop occurs. Because transmission losses
are very infrequent in the wired Internet, a dropped packet is assumed to have occurred when some router’s
buffer filled up. Hence, packet losses are treated as signs of network congestion. In response to the perceived
congestion, the sender immediately cuts its window size in half, and then begins again to steadily increase
the size of its window. This process, called additive increase/multiplicative decrease (Al/MD), continually
adjusts the size of the sender’s window (called the congestion window) over the life of a connection.

When a TCP connection is first established, the sender has no idea what the network capacity might be.

Increasing the window size linearly as in AlI/MD is likely to take too long, so instead the sender increases

22

the window size by one for every ACK it receives, effectively doubling the number of packets in transit
every round trip time (RTT). (The RTT is the interval from packet transmission to receipt of the correspond-
ing ACK.) This is the slow start phase, so named because the original practice was to transmit an entire
advertised window’s worth of packets all at once, which is likely to overwhelm the routers even if sufficient
bandwidth is available. Slow start ends when a packet drop is observed. The congestion window is halved

and the sender begins Al/MD.

Detecting and responding to packet loss

TCP has two mechanisms for detecting packet loss. Whenever an ACK arrives for a packet not previously
acknowledged (a new ACK), a timer is set for a period of time called the retransmit timeout interval (RTO).
If the retransmit timer expires before the next new ACK is received, TCP deduces that packet loss has
occurred. The packet following the last consecutively ACKed packet is retransmitted, the retransmit timer is
reset, the congestion window size is reduced to 1, and the sender enters slow start. Unlike at the beginning
of a connection, the sender now has some idea of what network capacity is available based on the recent
history of the congestion window. Before reducing the congestion window size to 1, TCP stores one-half
the current window size in a variable called the slow start threshold. This time, TCP will leave the slow start
phase and begin Al/MD as soon as the congestion window size reaches this threshold.

In prolonged periods of network congestion, it is possible that the retransmitted packet will not be
delivered either. The retransmit timer will expire again and the missing packet will be transmitted once
more. To avoid adding to the network congestion, TCP doubles the RTO each time the timer expires. This
exponential backoff of the RTO continues until the congestion is alleviated and packet flow is resumed. At
that time, the RTO is reset to the current estimate of the RTT plus an additional amount to account for the
sample variance of this estimate.

An additional method for detecting packet loss, called fast retransmit, is a heuristic intended to trigger a
packet retransmission sooner than the regular retransmit timeout mechanism, which is often coarse-grained.
When the sender receives a duplicate ACK, it knows that a packet has been delivered out of order. This

suggests that an earlier packet may have been lost, in which case there is no need to wait for the retransmit

23

timer to expire before retransmitting the dropped packet. However, the earlier packet may have only been
delayed, so the sender waits until it sees some number of duplicate ACKSs before retransmitting the missing
packet. This number, let us call it the fast retransmit threshold, is normally set to three.

Collectively, these measures — Al/MD, slow start, and the retransmit timer — comprise TCP’s congestion
control mechanism. It has been tuned extensively from years of experience in the wired Internet. However,
with the advent of wireless networking, it was soon evident that this mechanism does not work well in the
wireless environment, and that TCP performance suffers as a consequence. The problem is that, in addition
to congestion, packet losses in a wireless network can be caused by transmission errors and by node mobility
[15]. Moreover, packet losses tend to be correlated; single, random packet losses are infrequent. A reduction

in TCP’s sending rate is not the appropriate response to these kinds of losses.

2.2.2 TCP performance in 1-hop wireless networks

A number of schemes were proposed to mitigate the ill effects that noncongestion-related losses have on
TCP performance in 1-hop wireless networks. These networks are often characterized by sporadic bursts
of bit errors and temporary breaks in connectivity during handoffs. Balakrishnan et al. compared various
mechanisms for improving TCP performance across wireless links [9]. These methods fell into one of three
groups — split connections, link layer approaches, and end-to-end schemes. In their experiments, the TCP
sender resides on the wired network and the receiver is a mobile host communicating with a base station

over a wireless link.

Split connections

Split-connection protocols [6, 70] divide the TCP connection into two connections —a wired connection from
the sender to the base station and a wireless connection from the base station to the receiver. Loss recovery
over the wireless link is separated from that across the wired network, and so is hidden from the sender.
Because ACKSs can reach the source before the data packet arrives at the mobile host, split-connection pro-
tocols violate the end-to-end semantics of TCP acknowledgements. Another disadvantage of these schemes

is the overhead of maintaining TCP state at the base station, which tends to make handoffs complicated and

24

slow. While the split-connection approach does insulate the TCP sender from wireless losses, timeouts on

the wireless link cause the sender to stall frequently, resulting in poor end-to-end throughput.

Link layer approaches

A link-layer approach evaluated in [9] was the snoop protocol [8]. In the snoop method, a TCP-aware agent
at the base station caches the packets sent across the wireless link until they are ACKed so that local recovery
is possible in the event of packet loss. By shielding the TCP sender from duplicate ACKs caused by wireless
losses, the snoop protocol yielded increases of 10%-30% in throughput compared to a link-layer protocol
with no knowledge of TCP. A disadvantage of this or any other technique that requires examination of TCP

packet headers is that it will not work when encryption is used.

End-to-end schemes

The end-to-end schemes considered in [9] were selective acknowledgements and the addition of an ex-
plicit loss notification (ELN) option to TCP acknowledgements. Selective acknowledgements (SACK) al-
low the sender to handle multiple losses within a window more efficiently. ELN notifies the sender that a
noncongestion-related loss has occurred so the the sender can retransmit the lost packet without invoking
congestion control. Two different SACK schemes were considered: a simple version of the SMART pro-
posal [39], and an implementation based on RFC 2018 [49]. Compared to TCP Reno, the RFC 2018 SACK
implementation yielded an increase in throughput of approximately 24%, while the fraction of packets suc-
cessfully delivered (goodput) remained the same. The use of ELN increased throughput by about 25%,
and again, goodput was unchanged. The combination of SACK and ELN might be expected to increase

throughput even more, but this was reserved for future work.

2.2.3 TCP performance in MANETS

An effective way to deal with wireless transmission losses is to use a reliable link-layer. In MANETS,
the IEEE 802.11 MAC protocol provides reliable transmission of packets across wireless links. The MAC

layer will retransmit a packet until either an ACK is received, indicating an error-free transmission, or the

25

maximum number of retries is reached, in which case the link is declared to be broken. MANETS are still
subject, however, to noncongestion-related losses induced by node mobility. Now, instead of delays during
handoffs, we are faced with route failures and the loss of connectivity during route repair.

Since the root of the TCP performance problem in a MANET is its inability to distinguish between losses
due to congestion and other types of packet losses, designing a mechanism by which TCP can determine that
a loss was not caused by congestion, and thereby avoid congestion control, seems to be an obvious means of
solving the problem. If the TCP sender is notified that a route failure has occurred, it can suspend its normal
response to packet drops until the route has been reconstructed. Several researchers have taken exactly this

approach.

TCP-F: Chandran et al. propose a feedback based scheme they call TCP-Feedback or TCP-F [17]. In
this scheme, when an intermediate node detects the disruption of a route due to the mobility of the next
host along that route, it explicitly sends a Route Failure Notification (RFN) to the TCP sender. Other
nodes that receive the RFN invalidate that particular route and do not forward any packets intended for that
destination. Upon receiving the RFN, the source suspends all packet transmissions and freezes its state,
including the retransmission timeout interval and the congestion window. Eventually, an intermediate node
that has previously forwarded the RFN learns of a new route to the destination. That node then sends a
Route Re-establishment Notification (RRN) to the source. When the source receives the RRN, it restores its
previous state and resumes transmission. The effect of this scheme was studied by simulating a single TCP
connection over which 200-byte packets are transmitted at 12.8 Kbps. Periodic route failures were generated,
followed by route re-establishment after some fixed period of time, the route re-establishment delay (RRD).
For RRDs in excess of 2 seconds, an increase in throughput of roughly 45% to 75% was reported. For a
RRD of less than 1 second, however, essentially no benefit was derived from TCP-F. Three-fold increases

in throughput were obtained when the transmission rate was increased to 128 Kbps.

ELFN: Holland et al. advocate the use of explicit link failure notification (ELFN) to significantly improve
TCP performance in MANETS. In the ELFN scheme, when the TCP sender is informed of a link failure,

it freezes its state (timers and window size) as in TCP-F. There is no route re-establishment notification,

26

however. Instead, the source sends out packets (probes) at regular intervals to determine if a new route is
available. Using the ns-2 network simulator [22], they simulated a wireless network running TCP Reno and
the DSR routing protocol. The TCP packet size was 1460 bytes, and the maximum window size was eight
packets for both sender and receiver. They employed a random-waypoint network model, in which 30 nodes
move toward randomly picked destinations in a 1500m x 300m flat, rectangular area. Upon reaching its
destination, a node picks a new destination and continues onward without pausing. A total of 50 different
mobility patterns were considered, and the mean speed at which the nodes travel was varied. For a mean
node speed of 10 m/s, the throughput of a single TCP connection, averaged over the mobility patterns,
was increased by 55% or more. Interestingly, an even greater increase in throughput (close to 100%) was
obtained by simply turning off the DSR feature whereby intermediate nodes send out route updates based
on the contents of their (often stale) route caches. In other words, avoiding DSR’s stale route problem is of

greater benefit than explicit notification of route failures.

TCP-BuUS: Inthe TCP-BuS proposal [40], an explicit route disconnection message (ERDN) is generated
at an intermediate node upon detection of a route failure. This message is propagated to the source which
then stops transmission. Packet transmission is resumed after a partial path has been re-established from the
node which detected the route failure to the destination and that information is relayed to the TCP sender
in an explicit route successful notification (ERSN). During the course of a TCP connection, packets are
buffered at the intermediate nodes along the path from sender to receiver. Nodes upstream from the failed
link are able to forward these packets on to the destination once the route has been repaired, relieving the
sender from having to retransmit these packets. This scheme is somewhat complex and would seem likely

to have trouble with multiple route failures in quick succession, as in a high mobility network.

ATCP: In ATCP [45], a layer between TCP and the routing agent is proposed which, among other things,
shields TCP from packet loss that is perceived to be non-congestion related. Upon learning of a route
failure (by means of an ICMP Destination Unreachable message), ATCP places the TCP sender into persist
mode, thus avoiding the invocation of congestion control measures. While in persist mode, TCP generates

probe packets at exponentially increasing intervals up to a maximum of 60 seconds. Once the route is

27

re-established and an ACK is received for one of the probe packets, TCP moves out of persist mode and
resumes packet transmission.

To date, there has not been much reported in the way of evaluating TCP performance over different
MANET routing protocols. Ahuja et al. [2] used ns-2 to conduct a simulation-based comparison of TCP
performance over several protocols, including AODV, DSR, and SSA. Only a single source of TCP traffic
was simulated in their study. For low node mobility scenarios, the highest throughput was observed for
DSR. As node mobility was increased, AODV performance became as good or better than that of DSR.
Interestingly, for high node mobility scenarios, the SSA protocol achieved the highest TCP throughput. The
authors attributed this to the fact that SSA selects routes on the basis of stability and stable routes experience
fewer route failures. They concluded that the frequency of route failures, routing overhead, and delay in
route establishment are the important determinants of TCP throughput in an ad hoc network. Like [29], they
found that disabling route replies from cache actually improved TCP throughput for DSR by eliminating the

effect of stale routes.

2.2.4 UDP performance in MANETS

A method, called a packet spacing protocol (PSP) [38], has been proposed for making wireline UDP flows
perform well while being adaptive which is similar in principle to the Adaptive Datagram Protocol. In PSP,
the sender initially transmits packets at the highest possible rate and the receiver responds with acknowl-
edgements every round-trip time (RTT) to let the sender know how many packets it has received during the
previous RTT. The RTT is determined by the sender and its current value is relayed to the receiver in the
header of each PSP packet. From the acknowledgements it receives, the sender can determine whether the
current packet rate is too high and can lower the rate by introducing spacing between the packets as they are
sent. During the course of a run, if the send rate is below its maximum value and the sender determines that
no packets are being lost, the send rate is increased by reducing the packet spacing.

CTP [69] is a configurable transport protocol constructed from independent micro-protocols, which
provide the protocol’s service attributes and functional components such as packet sequence numbering,

positive acknowledgements, window-based or rate-based flow control, and congestion detection and control.

28

A combination of micro-protocols can be used to make CTP provide a sliding window-based unreliable

packet delivery, similar to the one we explored in implementing ADP.

2.3 Performance analysis

Most analyses of TCP performance over wireless networks have been conducted either with an experimental
testbed or by simulation. The experimental testbeds were built using real hardware, but in some cases, certain
testbed components were emulated in software for better experimental control and accuracy. In the case of
MANETS, experimental testbeds can be a bit cumbersome to build, although this has been done. Therefore,
most MANET performance evaluations have used simulation.

Another method of studying performance is analytical. For example, the capacity of ad hoc wireless net-
works has been studied by formulating models of the MAC layer communications, and then applying these
models analytically in various traffic scenarios [44]. The models themselves were validated in experimental

testbeds and by simulation.

2.3.1 Experimental testbeds

The computer most frequently used in testbeds has been a Pentium-based PC running a Unix variant, such
as BSD/OS or Linux, with a BSD version of TCP. 10 Mb/s Ethernet was commonly used for the wired
infrastructure in 1-hop wireless setups. IBD ThinkPad laptops were used for mobile hosts in [9]. Wireless
links have usually been WaveL AN direct sequence spread spectrum radios, which have a raw signaling
bandwidth of 2 Mb/s and a nominal range of 250 m. Wireless links have also been emulated in software.
For example, a time-based emulation of low-bandwidth wireless links was used in [14].

Cellular handoffs were studied in [15] by simulating the motion of the mobile host in software. This
gave the researchers precise control of handoff event timings, and allowed them to explore the full range of
handoff scenarios. Temporary disconnections were also simulated in [14, 25].

A MANET testbed was constructed at Carnegie-Mellon University by the DSR research group [47]. The
testbed consisted of five mobile nodes which were laptops in cars traveling at about 25 mph (10 m/s), and

two stationary nodes separated by a distance of about 700 meters. The cars moved continuously in a loop

29

with the stationary hosts located at either end of the loop. The area used for the testbed was open to other

traffic and had several stop signs, so node speed varied over time in a realistic manner.

2.3.2 Simulation methodology

A discrete event, packet-level routing simulator called MaRS (Maryland Routing Simulator) [3] was used in
[19]. MaRS had been used previously to compare link-state and distance-vector routing algorithms for the
NSFNET T1 backbone network [63]. The authors extended MaRS to simulate node mobility. Because their
study was limited to network-layer details, they did not model link-layer details, such as MAC protocol,
interference, and transmission errors, or any physical, radio channel details.

The simulation environment used in [24, 43] was GloMoSim [67]. GloMoSim is a scalable simulation
environment for wireless network systems implemented in PARSEC (PARallel Simulation Environment
for Complex Systems) [5]. It includes wireless protocols for radio propagation, mobility, MAC, network,
transport, and applications. GloMoSim permits several network layers to be modeled together so that their
interactions can be studied.

Perhaps the most widely used network simulator is ns-2 from Lawrence Berkeley National Laboratory
(LBNL) [22]. Extensions to ns-2 from the Monarch Project at Rice University [61] include a set of MANET
routing protocols (DSR, AODV, TORA, and others), an implementation of BSD’s ARP protocol, and an
802.11 MAC layer and a radio propagation model. Mechanisms are included for modeling node mobility
using pre-computed mobility scenarios.

In the Monarch wireless and mobility extensions to ns-2, a radio propagation model is employed which
combines a free space model where signal power attenuates as 1/r2 up to some reference distance (typically
100 m for outdoor low-gain antennas), and a ground reflection model outside the reference distance where
the signal falls off as 1/r*. The radio propagation model used for the GloMoSim simulations in [43] was
a free space model, although the authors did implement the Simulation of Indoor Radio Channel Impulse
Response Models (SIRCIM) [59] which considers fading, barriers, foliages, and multipath fading, and hence
is a more accurate model. However, SIRCIM was not used in their study because its complexity increased

simulation times drastically.

30

It is also possible to program one’s own network simulation. This was done in [17], where the authors
viewed the network as a black box that emulates MANET behavior from the transport layer point of view. A
fixed number of nodes was assumed between the sender and receiver. The effects of node mobility appeared
to the transport protocol in the form of sudden packet losses and delays. The frequency of route failures and

the time to re-establish a route were simulation parameters.

2.3.3 Mobility scenarios

Three important elements of a MANET simulation are the number of mobile nodes, the dimensions of the
space in which the nodes move about, and the mobility model, i.e. the manner in which the nodes move
(speed, direction, and so on). A specific instance of these elements is called a mobility scenario.

Many MANET performance studies specify a square or rectangular, flat space in which the nodes are
placed randomly at the start of the simulation. A square field has the advantage that all directions are
equivalent due to the spatial symmetry. A rectangular field, on the other hand, forces the use of longer
routes than would occur in a square field with the same node density. Commonly used fields are 1000x1000
m, 1500x300 m, and 2200x600 m. For the smaller of the rectangular fields, 50 nodes are normally used,
which yields a node density high enough that network partitions occur very infrequently or not at all. 100
nodes is the usual choice for the larger rectangular field.

A commonly used mobility model is the random waypoint model [13, 30, 35]. At the beginning of the
simulation, all nodes are stationary for an interval of time called the pause time. Each node then selects
a random direction and moves to that destination at a randomly chosen speed. Once it has arrived at the
destination, the node pauses again for pause time seconds, selects a new destination, and begins to move
again. Nodes repeat this behavior for the duration of the simulation. A pause time of 0 results in continuous
node movement, while a pause time equal to the length of the simulation yields a static model, i.e. no
movement. Node speeds are usually chosen from a uniform distribution, for example 0-20 m/s.

Together, the mean node speed and the pause time determine the degree of mobility in the random
waypoint model. A more general mobility metric was proposed in [34]. They define the mobility measure

between any pair of nodes as the time average of their absolute relative speed. The total mobility metric, for

31

a given scenario, is computed by averaging the mobility measure over all node pairs. They found that the
number of link failures in a random waypoint scenario was roughly proportional to their mobility metric.

In addition to random scenarios generated using the waypoint mobility model, three “realistic” scenarios
were designed and simulated in [34]: conference, event coverage, and disaster area. The capability to model
obstructions to radio propagation was added to the simulation. The conference scenario models 50 people
attending a seminar session. Mobility is low since only 10% of the nodes are moving at any time. High
node density results in relatively high radio interference. This scenario tests the responsiveness of a routing
protocol to local change in long-lived routes. The event coverage scenario models 50 highly mobile people,
e.g. news reporters or stock brokers, who spontaneously form small clusters as they move around. There
are many obstructions in the simulation area, and routes are generally short-lived. This scenario tests how
well a routing protocol responds to rapid changes in topology. In the disaster area scenario, rescue team
members form ad hoc networks in three geographically separate groups which can intercommunicate only
via nodes mounted on fast moving vehicles, e.g. helicopters. The workers move slowly and randomly within
each group. This scenario tests the ability of a routing protocol to deal with diverse mobilities and network

partitioning events.

Chapter 3

Adaptive Distance Vector

In this chapter, we describe a recently proposed routing protocol for MANETS, called Adaptive Distance
Vector (ADV) [12]. We present the results of a performance analysis in which we compare ADV to several
other proposed MANET routing protocols. These results greatly extend the performance analysis conducted
in [12]. We also describe enhancements to ADV that we have made in order to tune its TCP performance.
ADV is a distance vector algorithm that uses sequence numbers to avoid long-lived loops [27, 54]. As a
distance vector algorithm, ADV uses routing updates to learn and maintain routes. However, ADV reduces
routing overhead by adapting the size and frequency of updates to network traffic and node mobility. First,
routes are maintained only to nodes which are active receivers in order to reduce the number of routing table
entries that are included in updates. Second, routing updates are triggered in response to changing network
conditions, eliminating the need for periodic full updates such as those used in RIP [27]. Thus, the routing

overhead in ADV varies with load and mobility, a characteristic of on-demand routing protocols.

3.1 Adaptingthe size of routing updates to network load

In a traditional distance vector routing algorithm, each node in a network maintains a route to every other
node and includes all of its routing table entries in periodic routing updates. To reduce the size of routing
updates, ADV advertises the routes to active receivers only. A node is an active receiver if it is the receiver
of any currently active connection. Each routing table entry includes a field, receiver flag, that indicates

whether or not the destination is an active receiver.

32

33

Making routes active: When a new connection is to be established, the source node broadcasts an init-
connection control packet advertising that the destination node of the connection is now an active receiver.
When an intermediate node receives this control packet, it turns on the corresponding receiver flag in its
routing table and begins advertising its route to the receiver in future updates. The node then rebroadcasts
the control packet. Thus the entire network is flooded with the init-connection packet.

When the destination node receives the init-connection packet, it responds, if it is not already an active
receiver, by broadcasting a receiver-alert control packet with its current sequence number. As nodes process
and rebroadcast the receiver-alert packet, they establish reverse routes to the destination. With a pair of
broadcasts, all network nodes learn that the destination node has become an active receiver and acquire
routes to it.

Because the source node includes its routing table entry for the receiver, with the receiver flag set, in
all future updates, other nodes will learn of the new connection even if the init-connection control packet
is lost. This method of advertising an active receiver will be slower than the connection-initiation process.

However, there is no need to use timers, as in AODV, to ensure that the connection has been established.

Making routes inactive: At the end of a connection, the source node broadcasts an end-connection control
packet indicating that the connection has been closed. If the destination node has no other active connections,
it broadcasts a non-receiver-alert control packet indicating that it is no longer an active receiver. Upon
receiving one of these control packets, a node turns off the corresponding receiver flag in its routing table
and does not advertise its route to the destination in future updates. By means of the connection-initiation
and connection-termination processes, ADV varies the number of routes it maintains with the number of
open network connections.

Another method for making routes inactive, which does not depend on the propagation of end-connection
and non-receiver-alert control packets, is the use of an active route timeout like the one used in AODV.
When a route has not been used for some period of time, say 30 seconds, the destination node is no longer

considered an active receiver and that route will not be included in subsequent updates.

34

Table 3.1: Additional fields in a routing table entry at a node in ADV.

| Routing tableentry | Function |

Packets queued Number of data packets waiting for a route to this destination

Packets handled Number of data packets forwarded to this destination in the recent past
Receiver fleg Indicates whether this destination is an active receiver or not
Advertisement count | Indicatesthe number of updatesin which this entry should be advertised

3.2 Adaptingthefrequency of routing updates to network conditions

In order to make the frequency of routing updates adaptive to changing network conditions, several variables
are maintained to track network load and node mobility. Some of these variables are defined for each entry
in the routing table, while the others are defined at the node-level. We begin this section with a description
of these variables. Later we explain how these variables are used in combination to determine when it is

time to broadcast a routing update.

3.2.1 Routing table variables

The important variables that are part of each entry in the routing table are described in detail below. These
variables are in addition to the usual fields used in distance vector algorithms, i.e. sequence number, metric,

and next hop. The additional fields are also shown in Table 3.1 for easier reference.

Packets queued: This variable counts the number of data packets buffered at a node waiting for a route
to the destination corresponding to this routing entry. This count is incremented whenever a data packet is
buffered because no route to the destination is currently available. It is decremented whenever a data packet
is removed from the buffer for transmission once a route has been obtained. A non-zero count indicates an

immediate need for a fresh valid route to the destination.

Packets handled: This variable counts the number of data packets forwarded to this destination, including
packets originated by a source node. The count is incremented for each packet forwarded to this destination

and is halved whenever an update containing an entry for this destination is propagated. A non-zero count

35

Table 3.2: Node-level routing variables maintained in ADV.

| Variable | Function |

Trigger meter Sum of trigger values for recent events which indicate the need for an update
Trigger threshold | An adaptivetrigger meter level beyond which a node broadcasts a partial update
Neighbor changes | Counts the nodes entering and leaving 1-hop range

Packetsbuffered | Countstotal number of packets queued waiting for routes

indicates that the node is a forwarding node to this destination for one or more neighboring nodes. This

variable becomes redundant when the packets queued field has a hon-zero count.

Receiver flag: This flag is used to indicate whether or not the destination is an active receiver. The routing

entry is included in routing updates only if the flag is set.

Advertisement count: If the destination is an active receiver, this variable determines whether or not this
routing entry is to be included in the next partial update. (Routes to all active receivers are included in full
updates, regardless of the advertisement count.) The advertisement count is incremented if the routing entry
has any valid route with either a higher sequence number or a better hop count than the current routing table
entry, or if the route has become invalid. The count is decremented (to no less than 0) each time the routing
entry is included in an update. The detailed conditions under which the advertisement count is set are given

in Table 3.4.

3.2.2 Node-level variables

Each node maintains a single copy of each of the variables described below. These node-level variables are

also shown in Table 3.2.

Trigger meter: A node should trigger an update if it has packets waiting in buffers for routes to various
destinations, or if it has received an update from a neighbor which indicates a need for fresh routes. Also, a
node should advertise, as soon as possible, any fresh valid or invalid route to a destination for which it is a
forwarding node. Routing overhead can be reduced considerably if, instead of performing a routing update

immediately upon encountering one of the above conditions, a node waits until it sees a sufficient need to

36

trigger an update. Each node tracks events which indicate the need for an update. A value is associated with
each such event that is proportional to the urgency with which an update is required. This value is added to a
variable called the trigger meter. When the trigger meter exceeds some critical value, the trigger threshold,

a node schedules a routing update immediately.

Trigger threshold: The trigger threshold is used to decide when a partial update needs to be triggered.
After processing an update received from one of its neighbors, a node checks to see if the trigger meter
has crossed this threshold value. If so, a partial update is immediately scheduled for transmission. The
trigger meter is reset to zero after a partial or a full update is scheduled. The trigger threshold changes
dynamically based on the recent history of trigger meter values at the time of previous triggered updates.

The computation of this threshold value is explained later in this section.

Neighbor changes: In order to measure node mobility, a count is kept of the number of neighbor changes
that have taken place during the period of some fixed number of full updates. Neighbor changes consist of
other nodes coming into and going out of a node’s 1-hop neighborhood. The number of nodes coming into
the 1-hop range is determined by the number of times an update or connection control packet is received
from a node whose metric was previously greater than 1. The number of nodes going out of the 1-hop
range is determined by the number of link breakages that are reported by the MAC layer, plus the number
of times an update or connection control packet is received from a node whose metric has changed from 1
to a higher value. If the number of neighbor changes exceeds a preset number, node mobility is categorized

as HIGH_SPEED. Otherwise, the network is considered to be LOW _SPEED.

Packets buffered: This variable stores the total number of packets buffered at a node waiting for a route,
i.e. it is the node-level counterpart of the packets queued field in routing table entries.
3.2.3 Tunable constants

There are several constants that are defined for the ADV protocol. These constants are tunable in the sense

that the values of the constants can be chosen so as to optimize the performance of an ADV implemen-

37

tation. The values currently used for ADV simulations yielded the best protocol performance during the

development and testing of the original ADV implementation.

Trigger meter constants: There are four constants associated with the trigger meter: TRGMETER FULL,
TRGMETER_HIGH, TRGMETER_MED, and TRGMETER_LOW (given in descending order of their val-
ues). These constants are used to update the value of the trigger meter in response to various events (see

Section 3.2.5). The values currently assigned to these constants are 50, 20, 8, and 5, respectively.

Packet buffering constants: Two constants, BUFFER_THRESHOLD and BUFFER _TIMEOUT, are asso-
ciated with packet buffering. BUFFER_THRESHOLD is set at 2; if the number of packets buffered at a node
is greater than or equal to BUFFER_THRESHOLD, this is an indication that a routing update is required.
The BUFFER_TIMEOQUT constant limits the amount of time packets can remain in the queue; packets that
have been buffered longer than BUFFER_TIMEOUT seconds are dropped. In our experiments, we have

used BUFFER_TIMEOQUT values of 1, 5, and 30.

Other constants: The number of neighbor changes at or above which a network is considered to be
HIGH_SPEED is currently set at 8. Neighbor changes are tallied over a period of 6 full updates. The
minimum time that must elapse between routing updates is currently set at 0.5 second. When a new connec-
tion is to be established and a route is already known to the destination, the route is discarded if it has not

been used in the last 15 seconds.

3.2.4 Sending routing updates

In this section, we describe the process of sending routing updates. First, we give the structure of a routing
update entry (depicted in Table 3.3) and then we explain in detail the processing of a routing update at a
node.

A node identifies a destination as an active receiver if the receiver flag is set in the corresponding routing
table entry. A full update includes the entries for all active receivers regardless of the need for advertise-

ment. In a partial update, only the entries of the active receivers whose advertisement count is non-zero are

38

Destination | P address (32 bits)
Sequence number(16) | Metric(8) | Is_receiver(1) | Expected_response(2) | Unused(5)

Table 3.3: Fields in a routing update entry. Total entry size is 8 bytes. Sequence number is the latest known
sequence number of the destination. Metric is the hop count to the destination. Is_receiver flag indicates
whether or not the destination is an active receiver. Expected_response gives the priority with which a node
receiving this update should either respond with a fresh valid route or propagate this routing information
further.

included. The conditions under which the advertisement count of a routing entry is increased or decreased
are given in Table 3.4. A node always includes the routing table entry for itself in an update regardless
of its receiver status. Sequence numbers are used in a manner similar to their usage in other distance
vector algorithms [53, 54] except that every update (full and partial) results in a new higher sequence num-
ber. Sequence numbers are also updated by source and destination nodes when connection-initiation and
connection-termination control packets are broadcast.

Every routing update entry is assigned an expected response value of ZERO (bit sequence 00), LOW

(01), MEDIUM (10) or HIGH (11). Expected response values are determined as follows:

e An expected response of HIGH is assigned if there are packets buffered waiting for a route to this

destination (packets queued > 0).

e InaHIGH_SPEED network, an expected response of MEDIUM is assigned if the node is a forwarding

node to this destination (packets handled > 0).

e In a LOW_SPEED network, an expected response of LOW is assigned if the node is a forwarding

node to this destination (packets handled > 0).

o |f none of the above criteria apply, an expected response of ZERO is assigned.

The expected response value in an update entry indicates the priority with which a node receiving this
update should either respond to this advertised need for a fresh route or propagate the updated routing
information further.

To prevent thrashing due to frequent updates, we ensure that at least 500 ms elapse between any two

updates triggered by a given node. If the trigger threshold is crossed within 500 ms of a previous update,

39

the newly triggered update is delayed until the minimum time between updates has elapsed. Also, when an
update is triggered, a node checks its interface queues for a previous update that is still awaiting transmission.
If there is an update pending, then it is merged with the current update thereby avoiding the overhead of an
additional update.

Because full updates are triggered when the trigger meter value is high enough, there is no need for
periodic full updates. Nevertheless, a mechanism exists in ADV for transmitting full updates at regular

intervals if so desired.

3.2.5 Processing received updates

The conditions under which a node updates its routing table upon receiving an update are specified in detail
in Table 3.4. In addition, a node copies the Is_receiver flag from an update entry whenever the received
sequence number is greater than or equal to the sequence number currently stored in the node’s routing table.
This serves to identify the active receivers in the event init-connection, receiver-alert, and non-receiver-alert
control packets are lost.

As each entry in the received routing update is processed, the trigger meter is increased by a constant
amount that is appropriate for the expected response value. Specifically, the trigger meter is increased
by TRGMETERHIGH, TRGMETER_MED, or TRGMETER_LOW for an expected response of HIGH,
MEDIUM, or LOW, respectively. The trigger meter remains unchanged for an expected response of ZERO.

Some of the conditions in Table 3.4 also call for increases in the trigger meter. These increases are in
addition to those resulting from expected response values. In order to adapt quickly to topology changes in
a HIGH_SPEED network, a forwarding node adds TRGMETER_MED to its trigger meter for each update
entry with a fresh route or a route invalidation. The trigger meter is increased by TRGMETER FULL when
an active receiver learns that its routing entry is invalid in an update received from a neighbor. This is to
ensure that a full update is scheduled immediately after the update has been processed, the intent being to
keep one-hop neighbors informed of the presence of an active receiver within their neighborhood so that

they can serve as forwarding nodes to that receiver.

| My_Entry | Received Entry |

Condition

Action

40

Valid Valid my_segno < recv_seqno Update My_Entry with Received_Entry
Increment the advertisement count
If forwarding node in high-speed network,
trigger meter += TRGMETER_MED
my_segno == recv_segno && | Update My _Entry with Received_Entry
my_metric < recv_metric+ 1 | Increment the advertisement count
my_segno == recv_segno && | Decrement the advertisement count
my_metric == recv_metric+ 1 | Make the source of this update
the next hop in My_Entry
my_segno > recv_seqno || Increment the advertisement count
(my_seqno == recv_seqno & &
my_metric < recv_metric - 2)
Valid Invalid my_segno < recv_segno & & Invalidate My _Entry since | am
my_hop is source of thisupdate | dependent on this neighbor
Increment the advertisement count
If forwarding node in high-speed network,
trigger meter += TRGMETER_MED
my_segno > recv_seqno Increment the advertisement count
recv_dest == My_Address&& | Trigger meter += TRGMETER_FULL
receiver fbg == TRUE
Invalid valid my_segno < recv_segno Update My _Entry with Received_Entry
Increment the advertisement count
If forwarding node in high-speed network,
trigger meter += TRGMETER_MED
my_segno > recv_seqno Do nothing
Invalid Invalid my_segno < recv_seqno Copy recv_segno into My_Entry
my_segno > recv_seqno Do nothing

Table 3.4: Processing a routing update entry. recv_dest, recv_seqno, and recv_metric indicate the values for
the destination, sequence number, and hop count in the received routing update entry. my _segno, my _metric,
and my_hop indicate the destination sequence number, hop count, and the next hop node currently stored in
the entry for recv_dest in the routing table at the node which received this update.

41

After all the update entries have been processed, the accumulated trigger meter value is examined. If
it exceeds TRGMETER_FULL, a full update is immediately scheduled for transmission. Otherwise, if the

trigger meter has crossed the trigger threshold, a partial update is scheduled.

3.2.6 Processing data packets

When processing a data packet, a node looks in its routing table for a route to the intended destination. If
a valid route exists, the data packet is immediately forwarded to the next hop node specified in the routing
entry. Otherwise, the packet is buffered until a valid route becomes available. The non-availability of
routes indicates that more frequent routing updates are required in order to maintain up-to-date routes.
Therefore, when a new packet is buffered, if the number of packets buffered is greater than or equal to
BUFFER_THRESHOLD, TRGMETER_MED is added to the trigger meter in order to more quickly trigger

an update.

3.2.7 Computing the trigger threshold

A node that is either an active receiver or a forwarding node is called an active node. The trigger threshold
value for an active node is changed dynamically based on the recent history of trigger meter values recorded
at the time of previous partial updates. The trigger threshold value is initially set to TRGMETER HIGH.
Each node keeps track of the number of partial updates it has done since the last full update, the sum of
trigger meter values at the time of each partial update, and the time elapsed since the last full update. The

trigger threshold value is computed at the time of each full update using the following rules:

e The average trigger meter value per triggered update is computed by dividing the sum of trigger meter
values (which is accumulated in a special variable because the trigger meter is reset after every update)
by the number of partial updates since the last full update. If no partial updates have been done since

the last full update, the average trigger meter value is set to one-half the sum of trigger meter values.

e In order to derive an estimate of the average trigger meter values observed in the recent past, an

historical average trigger meter value is maintained and updated at each full update. Denote the newly

42

computed average trigger meter value by ¢,,, and the current historical average trigger meter value by
tp. Then the new historical average is computed as ¢, = (¢, + t5)/2. This is similar to the smoothing
function, (atyq + Btnew) USed sometimes in, for example, the computation of the estimated round
trip time in TCP. Here equal weights of 0.5 are given to o and 8 in order to adapt to network mobility

changes rather quickly.

¢ Although the above criteria work well, it has been observed that some nodes will benefit from en-
gaging in even more routing activity. To enable this, the number of partial updates done since the
most recent full update is compared to the maximum expected number of partial updates given that
updates must be no less than 0.5 seconds apart. If the number of partial updates is at least 60% of the
maximum number, the trigger threshold is set at ¢5. If the number of partial updates is less than 60%
but greater than or equal to 30% of the maximum number, the trigger threshold is set at 0.75 x t,.
Otherwise, the trigger threshold is set at 0.5 * 5. In the latter two cases, the trigger threshold is set to

a fraction of ¢, in order to increase the frequency of partial updates.

For non-active nodes, the trigger threshold is set to a constant value that is commensurate with the speed
of the network. For low speed networks, the trigger threshold is set to TRGMETER HIGH, and for high
speed networks it is set to TRGMETER_MED.

The idea in computing the trigger threshold differently for different nodes is to ensure that active receiver
nodes and nodes with too many buffered packets will engage in a level of routing activity that is adaptive
to network conditions, while at the same time preventing other nodes from transmitting more updates than

necessary.

3.3 Tradeoffsin ADV update strategy

In traditional distance vector protocols, a node is required to send a routing update whenever the metric for
a route is changed in the routing table. This update must occur almost immediately even if it is not yet time
for the next periodic update. These triggered updates can cause excessive loads on networks with limited

capacity or a large number of nodes. To avoid this overhead, the triggered updates may be delayed by a

43

small random time between 1 and 5 seconds so that if additional route changes occur, the changes will all
be consolidated into one triggered update. However, such delaying is beneficial only in static and low speed
networks. In ADV, any advertised need for fresh routes can trigger an update. Each of the entries in a routing
update has an expected response value, which indicates the necessity of triggering an update. The expected
responses are dependent on the mobility and load conditions of the network. Unlike in other DV algorithms,
having packets waiting for a route is a sufficient reason for a node to transmit an update. Also, in other DV
based protocols periodic full updates are necessary to maintain fresh routes, whereas in ADV full updates
occur only as network conditions warrant.

In on-demand protocols, the need for a fresh valid route to an active receiver will immediately result in
a route discovery process. Intermediate nodes may broadcast a route request should a route to the receiver
become unavailable, as in, for example, local route repair in AODV. Because route replies are unicast, they
reach the intended source nodes reliably. In ADV, however, a fresh valid route can only be obtained via
routing updates received from neighboring nodes. Hence, obtaining a valid route might take a longer time

in ADV than in an on-demand protocol.

3.4 ADV performance analysis

3.4.1 Experimental methods
Simulation environment

For our simulations, we used the ns-2 network simulator [22] with the wireless and mobility extensions
from the Rice University Monarch Project [61]. These extensions include the modeling of an IEEE 802.11
wireless LAN [32]. We used the Monarch implementations of DSDV and DSR, and all parameter values and
optimizations used for DSDV and DSR are as described by Broch et al. [13]. The AODV implementation
is based on the original Monarch release, with a number of added performance optimizations [20]. ADV
was implemented by Boppana and Konduru as described in [12]. Some of the important parameter values
used in the various routing protocols are given in Tables 3.5 - 3.8. Link layer notification of broken links

was used for ADV, AODV and DSR. This was not done in DSDV since Broch et al. report that link-layer

44

Table 3.5: Values of various parameters used in the DSDV protocol.

| Parameter

| Vaue

Periodic update interval

15 seconds

Minimum time between two triggered updates

1 second

Maximum packets buffered per node per destination | 5

Periodic updates missed before link declared broken | 3

Table 3.6: Values of various parameters used in the ADV protocol.

| Parameter | Value |
Minimum time between two triggered updates | 0.5 seconds
Maximum packets buffered per node 64
Buffer timeout 1 or 5 seconds
Buffer Threshold 2
TRGMETER_FULL 50
TRGMETER_HIGH 20
TRGMETER_MED 8
TRGMETER_LOW 5
Periodic update interval 00

feedback increases the number of routing updates [13]. Therefore in DSDV, loss of a neighbor was detected

when 3 consecutive periodic updates were missed from that neighbor.

We simulated an ad hoc network with 50 nodes moving in a square 1000m x 1000m field. A node

that reaches the edge of the field exits the field and reenters it immediately from the opposite side of the

field traveling in the same direction and at the same speed as before. This model simulates a network in

which nodes enter and leave over time, but the total number of nodes is constant. For comparison with other

performance studies [13, 19, 20, 34, 43], we also used field sizes of 1500m x 300m for a 50-node network

and 2600m x 600m for a 100-node network. In those simulations, nodes which reach the field boundary

Table 3.7: Values of various parameters used in the AODV protocol.

| Parameter | Value |

Active route timeout 50 seconds
Request retries 3

Maximum packets buffered per node | 64

Buffer timeout 30 seconds
TTL_START 1
TTL_INCREMENT 2
TTL_THRESHOLD 7

45

Table 3.8: Values of various parameters used in the DSR protocol.

| Parameter | Vaue |

Time between retransmitted requests | 0.5 seconds
Maximum packets buffered per node | 64

Buffer timeout 30 seconds
Primary route cache size 30 entries
Secondary route cache size 34 entries

bounce back into the field. The node density of the rectangular-field networks is higher than in the square
field and network partitions are extremely rare, but the nodes have a tendency to cluster in the middle of the
field. The nodes in a square field tend to be more evenly distributed. Despite the lower node density, the
square field has very few network partitions.

During a simulation, the nodes move according to a mobility pattern or scenario that was generated
in advance using a model of node mobility. Several interesting mobility models are described in [30].
The mobility patterns we used were based on the random waypoint model, in which a node travels in a
predetermined direction at some speed until it reaches its destination. Upon reaching its destination, a node
pauses for a set length of time before moving on to its next destination. To mimic high node mobility, node
speeds were uniformly distributed between 0 m/s and 20/ms, yielding a mean node speed of 10 m/s, and the
pause time was set to zero. For low-mobility scenarios, the pause time was set to 100 seconds.

We simulated the steady-state conditions of a network with various background traffic loads generated
by 25, 50, and 100 constant-bit-rate (CBR) connections. We also simulated the transient conditions of a
network with varying loads from 10 to 50 CBR connections started 10 at a time over a 5 minute period.
The CBR packet sizes for all simulations were fixed at 512 bytes. Since routing protocol performance is
sensitive to movement patterns, a total of 30 different mobility scenarios were used and each performance
metric was averaged over these scenarios.

The steady-state results for the high-mobility, 50-node square field with 25 and 50 connections are
given in Section 3.4.2. The transient-state results for the 50-node square field are given in Section 3.4.3 with
additional results included in Appendix A. The steady-state results for the 50-node and 100-node rectangular

fields and for the 100-node low-mobility network are presented in Appendix A.

46

Performance metrics

In each simulation run, we measured packet latency, delivery fraction, and throughput. Packet latency is
the time, in milliseconds, it takes for a data packet to travel from its source to its destination, including
queuing and protocol processing delays as well as propagation and transmission delays. The packet delivery
fraction is the ratio of the number of packets successfully received by the destination to the number of
packets transmitted by the source. Data packets that take more than 5 seconds to reach the destination are
considered no longer usable and are treated as having been dropped by the destination. Throughput is the
average rate at which data is delivered from source to destination, measured in Kbits per second.

In order to gauge the routing protocol overhead, we measured both the number of routing packets and the
number of bytes of routing data transmitted per second at the IP layer. The overhead includes the routing of
the background CBR traffic. For DSR, the number of bytes of routing data transmitted includes the routing

information carried by data packets.

3.4.2 Steady-state behavior of a high mobility network

In this section, we present the results obtained for a high mobility, 50-node network in the square field.
We varied the number of CBR flows, using 25 and 50 connections. In order to measure the steady-state
performance of the routing protocols, statistics were gathered for 500 seconds following a warm-up period

of 100 seconds.

Packet latency

Figure 3.1 shows the average packet latencies observed for 25 connections. DSDV consistently yields
the shortest packet delays. This is expected since DSDV’s proactive route updates ensure that a route to
any reachable destination is available when needed. Because of the adaptive proactive nature of its route
maintenance, ADV with 1-second buffering (labeled ADV-1sec in the performance graphs) enjoys a similar,
though smaller, advantage with respect to the on-demand algorithms, which incur packet delays during the
route discovery process. Increasing the buffer timeout interval to 5 seconds enables ADV to deliver more

packets, as shown in Figure 3.1, but these packets will experience longer delays on average. DSR is able to

47

50 Nodes, 1000m x 1000m Field 50 Nodes, 1000m x 1000m Field

25 Connections, 0 Pause Time 25 Connections, 0 Pause Time
10000 T T T T 100 T

AODV

DSR
A—aA ADV-1sec
&—e ADV-5sec
Dsbv

@
o
T

1000 |

@
=]
T

N
Q
s}
IS
o

AODV

DSR
A—A ADV-1sec
&—e ADV-5sec

DSDV

Latency (ms) [log scale]
Packet Delivery Fraction (%)

N
(=]
T

10

0 100 200 300 400 500 0 100 200 300 400 500
Offered Traffic (Kbps) Offered Traffic (Kbps)

Figure 3.1: Packet latency and delivery fraction for 25 connections in a 50-node network on a 1000m x
1000m field.

snoop packet headers for source routes, reducing its need for route discovery, so DSR yields lower packet
latencies than AODV. However, as DSR and AODV approach saturation in the neighborhood of 200 Kbps
of offered traffic, packet delays increase much more rapidly for DSR and latencies are lower for AODV.
The packet latencies observed for 50 connections are shown in Figure 3.2. The additional connections
have no effect on DSDV latencies because a proactive algorithm maintains all possible routes whether they
are in use or not. The larger number of CBR flows has very little impact on ADV latencies except at very low
traffic loads, for which increased packet delays were observed. With a low volume of traffic, the frequency
of ADV route updates is reduced which in turn leads to higher packet latencies. This effect is magnified as
the number of active receivers increases. Average latencies for AODV and DSR were unchanged for very
low and very high traffic loads, but packet delays increased more rapidly as saturation was reached between
150 and 250 Kbps of offered traffic. The longer delays result from the increased route discovery overhead
required to establish and maintain more connections. The impact of this additional overhead is minimal in
a very lightly loaded network and is inconsequential when the routing protocol is well beyond its saturation

point.

Delivery fraction

In Figure 3.1, we see that for all the protocols except DSDV, the packet delivery fraction rises rapidly as

the offered traffic increases from very low traffic loads to moderate loads. The proactive DSDV maintains a

48

50 Nodes, 1000m x 1000m Field 50 Nodes, 1000m x 1000m Field

50 Connections, 0 Pause Time 50 Connections, 0 Pause Time
10000 T T T T 100

AODV

DSR
A—aA ADV-1sec
&—e ADV-5sec
Dsbv

80 |

1000 F |
60 | A

40

N
Q
s}

AODV

DSR

20 - A—A ADV-1sec

&—e ADV-5sec
DSDV

Latency (ms) [log scale]
Packet Delivery Fraction (%)

10 L L L L L L L L
0 100 200 300 400 500 0 100 200 300 400 500

Offered Traffic (Kbps) Offered Traffic (Kbps)

Figure 3.2: Packet latency and delivery fraction for 50 connections in a 50-node network on a 1000m x
1000m field.

fairly constant delivery rate as the network load increases, but the rate is only 60 to 65%. Because DSDV
does not consider the link to a neighboring node to have failed until 3 periodic updates from that node have
been missed, there can be a significant delay before the link is repaired during which time packets continue
to be dropped at the MAC layer. In these simulations, nearly all the DSDV packet drops occurred at the
MAC layer as a result of mobility-induced link failure or MAC-layer congestion. There were very few
drops due to late packet delivery, and no packets were dropped because of routing-layer buffer overflow.

With 5-second buffering, ADV drops fewer packets in the network, so it is able to deliver a very high
fraction of approximately 98%. AODV and ADV with 1-second buffering have comparable delivery rates,
peaking at just over 95%. DSR delivery fractions lag the others, reaching a maximum at around 85%. The
point at which the various protocols begin to saturate is marked by declining delivery rates. The on-demand
protocols saturate at around 200 Kbps of offered traffic, while ADV and DSDV are able to sustain higher
loads and do not reach saturation until the offered traffic is in excess of 300 Kbps.

Delivery fractions for DSDV and ADV are unaffected by the larger number of connections in Figure 3.2,
except at very high traffic loads for which ADV’s delivery rate is slightly lower. Due to the increased routing
overhead for 50 connections, the delivery fractions for AODV and DSR are reduced by about 5 percentage

points and decline a bit more rapidly once saturation is reached.

49

50 Nodes, 1000m x 1000m Field

25 Connections, 0 Pause Time
T T

o
=}
s}

AODV
DSR
- 4—AADV-lsec
o—e ADV-5sec
DSDV

N W N
Q o Q
o [s) o

Throughput (Kbps)

=
S)
=]

B!

0 100 200 300 400 500
Offered Traffic (Kbps)

Figure 3.3: Throughput for 25 connections in a 50-node network on a 1000m x 1000m field.

Throughput

In Figure 3.3, we see that ADV, with its high packet delivery rate, yields the highest throughput. The use
of a longer, 5-second buffer refresh time gives the best throughput, but as saturation is reached between 300
Kbps and 350 Kbps, the additional buffering results in increased network contention. As a consequence,
throughput and packet delivery fraction fall off more rapidly than with a buffer refresh time of 1 second.
DSDV gives the lowest throughput at low to moderate traffic loads. DSR throughput peaks at about 200
Kbps, while AODV is able to sustain a higher throughput of nearly 240 Kbps.

Every protocol except AODV experiences a decline in throughput beyond its saturation point, especially
5-second ADV. The large quantity of packets that ADV is buffering at intermediate nodes is a problem at
very high loads. Reducing the maximum buffer time to 1 second allows ADV to do a much better job of
sustaining its peak throughput. It is noteworthy that AODV is robust to high traffic loads, maintaining its
peak throughput as the volume of offered traffic increases.

As shown in Figure 3.4, DSR throughput is not affected by the increase in the number of connections
from 25 to 50. The relative performances of ADV and the on-demand protocols remain the same as in the
25-connection case, although throughputs are somewhat lower beyond saturation. In particular, the peak

throughput for AODV dropped from about 240 Kbps to around 200 Kbps.

500

IP Layer Routing Overhead (pkt/s)

0

50 Nodes, 1000m x 1000m Field

50 Connections, 0 Pause Time
500 T T

AODV

DSR

400 - A—A ADV-lsec

o—e ADV-5sec
DSDV

300 A

200

Throughput (Kbps)

100

0 100 200 300 400 500
Offered Traffic (Kbps)

Figure 3.4: Throughput for 50 connections in a 50-node network on a 1000m x 1000m field.

50 Nodes, 1000m x 1000m Field 50 Nodes, 1000m x 1000m Field

25 Connections, 0 Pause Time 25 Connections, 0 Pause Time
T T T T T T

400 -

300 -

200 -

100

500

50

AODV AODV

DSR DSR
A—A ADV-1sec A—A ADV-1sec
®—e ADV-5sec ®—e ADV-5sec

DSDV DsSDV

IN

Q

o
T

W

o

[s)
T

N

Q

o
T

=

[S)

=]
T

IP Layer Routing Overhead (Kbps)

&
0 100 200 300 400 500 % 100 200 300 400
Offered Traffic (Kbps) Offered Traffic (Kbps)

500

Figure 3.5: IP-layer routing overhead for 25 connections in a 50-node network on a 1000m x 1000m field.

Routing overhead

DSDV uses periodic updates to proactively maintain its routing tables. These updates occur at regular

intervals and include routes to all nodes in the network. Thus, the rate at which routing packets are generated

is constant with respect to the offered traffic, and if the number of nodes is fixed, the size of these packets

is also constant. As shown in Figure 3.5, DSDV generates fewer routing packets than the other protocols

except at very low traffic loads. However, because routing information is maintained for every node, DSDV

produces the highest volume of routing traffic as measured in bytes.

ADV also uses routing updates, but rather than being periodic, the updates are load-driven and so the

number of updates increases with increasing load. The frequency of ADV updates is limited, however, and

this maximum rate is reached as the offered traffic exceeds 200 Kbps. Due to the volume of route requests

51

50 Nodes, 1000m x 1000m Field 50 Nodes, 1000m x 1000m Field

50 Connections, 0 Pause Time 50 Connections, 0 Pause Time
T T T T T

o
=}
s}

500 T
AoDV AoDV
DSR
A&—A ADV-1sec
®—e ADV-5sec

DsSDV
>
200 -

/ * /

A—A ADV-1sec
400 - ¢—e ADV-5sec
DSDV

IN
Q
o

A
o
[s]

300 -

N
Q
o

IP Layer Routing Overhead (pkt/s)
"
8

IP Layer Routing Overhead (Kbps)

100

0 0
o 100 200 300 400 500 0 100 200 300 400 500
Offered Traffic (Kbps) Offered Traffic (Kbps)

Figure 3.6: IP-layer routing overhead for 50 connections in a 50-node network on a 1000m x 1000m field.

and replies generated during the route discovery and route repair processes, the on-demand protocols gen-
erate a large number of routing packets. Compared to ADV, the number of routing packets is nearly twice
as high for DSR and almost four times as high for AODV. As noted above, snooping and caching reduce
DSR’s route discovery overhead compared to AODV.

The picture changes when we consider the volume of routing traffic in bytes. In its attempt to maintain
fresh routes to all active receivers, ADV generates larger routing packets than the on-demand protocols,
especially at low to moderate loads. However, this view of the routing overhead can be misleading. The cost
to acquire the medium to transmit a packet is significantly greater in terms of power and network utilization
than the incremental cost of adding bytes to an existing packet. Thus, ADV’s low routing overhead in terms
of packets is a definite advantage relative to the on-demand protocols.

At the MAC layer, ADV enjoys another advantage in routing overhead. Whereas AODV and DSR both
utilize unicast packets to deliver route error and route reply messages, ADV routing information is carried
entirely by broadcast packets. Broadcast packets do not incur the added MAC layer overhead of the RTS,
CTS, and ACK packets required for unicast packet transmissions. It is their high routing overhead at the
MAC layer that causes the on-demand protocols to saturate at lower loads than ADV.

The impact of increasing the number of connections from 25 to 50 is evident when comparing Figures 3.5
and 3.6. In terms of routing packets, DSDV and ADV are unaffected by the increase, although the volume

of routing information, as measured in bytes, does rise significantly for ADV. In contrast, the number of

52

AODV routing packets is 25% higher with 50 connections, while the number of DSR routing packets is up
by over 10%. The number of AODV and DSR routing bytes are also much higher, but ADV still produces

the largest volume of routing bytes.

ADV vs. DSDV

We included DSDV in our performance analysis because we wanted to clearly show the benefits of ADV’s
adaptive approach to proactive routing. As we have seen, ADV Yyields significantly higher throughputs and
packet delivery fractions than DSDV. At the same time, packet latencies for ADV are comparable to those
for the on-demand protocols, DSR and AODV. We believe ADV is clearly the better of the two proactive

routing algorithms. Therefore, we did not consider DSDV in subsequent performance analyses.

3.4.3 Transient behavior of a high mobility network

In this section, we examine the transient-state conditions of a high mobility, 50-node network in the 2000m x
1000m square field. Initially, the network traffic is generated by 10 CBR connections. Ten more connections
are added every 60 seconds until a total of 50 connections have been started. The simulation continues for
two more 60-second intervals during which no additional connections are initiated.

We present two sets of results. In Figures 3.7 - 3.9, the offered traffic is 5 Kbps for each 10 connections,
so that the total load is 25 Kbps when all 50 connections have been started. In Figures 3.10 - 3.12, the offered
traffic is 20 Kbps for each 10 connections, giving a maximum load of 100 Kbps. Additional transient-state
results are included in Appendix A for maximum total loads of 200 Kbps and 300 Kbps.

Referring to Figure 3.7, AODV is quite stable from the outset, showing very little change in packet
delivery fraction over time. The delivery fractions for ADV, on the other hand, start out low and do not begin
to level off until several 60-second intervals have elapsed. Once 20 connections have been added, ADV with
5-second buffering has the highest delivery fraction, but also the largest packet delays. With a shorter buffer
refresh time of 1 second, ADV latencies are as low or lower than those of the on-demand protocols. All three

protocols exhibit reduced latencies as connections are added. The packet delays continue to drop (and to a

10000

Latency (ms) [log scale]
"
8

10

50 Nodes, 1000m x 1000m Field

1000 |

Transient Case, 25 Kbps Max Traffic
T T T T

AODV

DSR
A—aA ADV-1sec
&—e ADV-5sec

.\.———0——0‘.\0

Taeee—

60 120 180 240 300 360 420
Time (s)

Packet Delivery Fraction (%)

100

80 |

60

40 -

20

50 Nodes, 1000m x 1000m Field

Transient Case, 25 Kbps Max Traffic
T T T T

AODV

DSR
A&—A ADV-1sec
o—e ADV-5sec

180 240 300 360
Time (s)

60 120

Figure 3.7: Packet latency and delivery fraction for transient case with 25 Kbps max traffic in a 50-node
network on a 1000m x 1000m field.

25

50 Nodes, 1000m x 1000m Field

Transient Case, 25 Kbps Max Traffic

20

15 -

10 -

Throughput (Kbps)

AODV

DSR
A—A ADV-1sec
®—e ADV-5sec

.
60 120 180 240 300 360
Time (s)

420

Figure 3.8: Throughput for transient case with 25 Kbps max traffic in a 50-node network on a 1000m x
1000m field.

lesser extent, the delivery fractions continue to increase) over the final two 60-second intervals, suggesting

that the protocols have not yet stabilized.

In Figure 3.8, ADV reaches its maximum throughput at the end of the fifth 60-second interval, with

almost no change over the remainder of the simulation. On the other hand, the on-demand protocols continue

to gain throughput beyond time 300, indicating that AODV and DSR stabilize more slowly than ADV.

The IP-layer routing overhead of all three protocols increases with added connections, although the

number of ADV routing packets reaches its maximum once 20 connections have been initiated. Routing

overhead declines somewhat for AODV and ADV in the last two 60-second intervals as those protocols

stabilize.

IP Layer Routing Overhead (pkt/s)

50 Nodes, 1000m x 1000m Field

Transient Case, 25 Kbps Max Traffic
T T T T

500
AODV
DSR
400 - a—aA ADV-1sec
®—e ADV-5sec
300
200 -
100 [
P
—r ——————yy
0 :
o 60 120 180 240 300 360 420

Time (s)

500

400

300

200

100

IP Layer Routing Overhead (Kbps)

54

50 Nodes, 1000m x 1000m Field
Transient Case, 25 Kbps Max Traffic

AODV

DSR
A—aA ADV-1sec
®—e ADV-5sec

60 120 180 240 300 360 420
Time (s)

Figure 3.9: IP-layer routing overhead for transient case with 25 Kbps max traffic in a 50-node network on a
1000m x 1000m field.

Latency (ms) [log scale]

10000

1000 |

10

50 Nodes, 1000m x 1000m Field
Transient Case, 100 Kbps Max Traffic

AODV

DSR
A—aA ADV-1sec
&—e ADV-5sec

\'\'\'—‘\«

—

60 120 180 240 300 360 420
Time (s)

100

80

60

40

Packet Delivery Fraction (%)

20

50 Nodes, 1000m x 1000m Field
Transient Case, 100 Kbps Max Traffic

e

AODV

DSR
A&—A ADV-1sec
o—e ADV-5sec

60 120 180 240 300 360 420
Time (s)

Figure 3.10: Packet latency and delivery fraction for transient case with 100 Kbps max traffic in a 50-node
network on a 1000m x 1000m field.

100

80

60

40

Throughput (Kbps)

20

50 Nodes, 1000m x 1000m Field

Transient Case, 100 Kbps Max Traffic
T T T rs

AODV

DSR
A— ADV-1sec
o—e ADV-5sec

60 120 180 240 300 360 420
Time (s)

Figure 3.11: Throughput for transient case with 100 Kbps max traffic in a 50-node network on a 1000m x
1000m field.

55

50 Nodes, 1000m x 1000m Field 50 Nodes, 1000m x 1000m Field

Transient Case, 100 Kbps Max Traffic Transient Case, 100 Kbps Max Traffic
T T T T T T T T

o
=}
s}

500

AODV
DSR

[&—aAADV-lsec
®—e ADV-5sec

AODV
DSR

400 - a—aA ADV-1sec
®—e ADV-5sec

IN
Q
o

A
o
[s]

300 -

200 -

N
Q
o

IP Layer Routing Overhead (pkt/s)
"
8

IP Layer Routing Overhead (Kbps)

100 b
F/‘—+—._i\ll

0

0 60 120 180 240 300 360 420 0 60 120 180 240 300 360 420
Time (s) Time (s)

Figure 3.12: IP-layer routing overhead for transient case with 100 Kbps max traffic in a 50-node network
on a 1000m x 1000m field.

The story is qualitatively much the same when the maximum traffic load is increased to 100 Khbps.
At this higher level of offered traffic, ADV packet delivery fractions stabilize more quickly. As shown in
Figures 3.10 and 3.11, ADV with 1-second buffering now outperforms AODV in terms of delivery fraction

and throughput.

3.5 Tuning ADV for TCP performance

As we have noted earlier, previous performance analyses of MANET routing protocols have primarily used
constant-bit-rate UDP flows for network loads. For this reason, the initial design of ADV was geared toward
that type of one-way traffic. A TCP connection, of course, involves a two-way flow — data packets traveling
from sender to receiver and acknowledgements traveling in the reverse direction. With this in mind, we
modified the ADV connection-initiation process.

Originally, ADV required the intermediate nodes which propagate a receiver-alert packet to construct
a reverse route to the destination in addition to marking the destination as an active receiver. However, the
connection-initiation process is also an opportunity for a node, when it receives an init-connection packet,
to establish a reverse route to the connection source. If the new connection is a two-way connection, e.g.
TCP, the connection source should also be marked as an active receiver. The header prepended to all IP
packets includes a field which designates the transport-layer protocol for which a packet is destined. Thus

it is straightforward for ADV to determine if a data packet belongs to a TCP flow. Whenever a new route is

56

added to a node’s routing table as part of the connection-initiation process, the value of that node’s trigger
meter is increased to stimulate route updates which will help to propagate the new routing information in
the event init-connection packets are lost.

In Section 3.4, we compared the ADV performance attained for two different buffer timeout intervals, 1
second and 5 seconds. Noting the impact of the choice of timeout value, we decided to investigate the effect
of the buffer timeout on TCP performance. Based on the results of experiments presented later in Section
4.5, we concluded that using different buffer timeout intervals for TCP (30 seconds) and non-TCP traffic (1
second) improved overall performance.

In the course of our early TCP experiments, we discovered that on occasion route establishment was
delayed because ADV attempted to use a stale route, which in turn led to a TCP retransmit timeout. This
occurred when the source node had, at an earlier point in time, been a 1-hop neighbor of the destination node
and thus a route to the destination, albeit out-of-date, was available for use. The problem is easily solved by
ignoring routing table entries for nodes that were not previously active receivers.

Another modification we made to ADV was not strictly TCP-related. When a node receives a route
update with a higher sequence number than the one it currently has stored for that destination, or if the
distance to the destination is shorter through the source of the route update than the currently stored metric,
the routing table is updated with the new information. However, what is the appropriate action to take when
the new sequence number and metric do not differ from the stored values? Originally, ADV changed the
route’s next hop field to point to the node from which the route update was received. The intuition was that
the source of the update is known to currently be a 1-hop neighbor, and hence the next hop information is
more likely to be useful in the future. However, simulation experience has shown that, in fact, it is counter-

productive to do this. Leaving the next hop field alone will generally result in better performance.

3.6 Concluding remarks

The ADV routing protocol starts from a traditional distance vector algorithm, such as that employed in
DSDV. Whereas DSDV relies on periodic updates of fixed size to maintain its routing tables, the size and

frequency of ADV’s route updates are adaptive to network load and node mobility. This adaptivity gives

57

ADV a significant performance advantage over DSDV in terms of throughput and packet delivery fraction.
Although packet latency is higher with ADV than with DSDV, the packet delays for ADV are comparable
to the delays for the on-demand protocols.

The routing overhead of the on-demand routing algorithms, which rely on route discovery mechanisms
to establish and repair routes, is higher than that of ADV with its proactive route maintenance. ADV’s lower
overhead results in better performance at moderate to high traffic loads. However, at very low levels of
traffic or when the number of connections is small (less than 10), the frequency of ADV route updates is not
sufficient to make proactive route maintenance competitive with route discovery. In these cases, AODV and
DSR yield superior performance. One of the important design issues in ADV is the tradeoff between the
higher overhead of more frequent updates and the increased packet latency that comes with a lower level of
routing activity. As it is currently configured, ADV gives its best performance, relative to DSR and AODV,

for moderate to high traffic loads in high-mobility networks.

Chapter 4

Improving TCP Performancein Mobile Ad
hoc Networks

The performance of transport layer protocols will be a key factor in the successful extension of Internet
applications and services to mobile ad hoc networks. The Transmission Control Protocol (TCP) is the de
facto standard transport protocol for the Internet, so providing a high level of TCP performance in MANETS
is of particular importance. While TCP has been extensively tuned for wireline networks, in its current form
TCP does not perform well when used in MANETS. Therefore, one of the main thrusts of this dissertation

is to identify ways in which we can increase the performance of TCP in MANETS.

4.1 Techniquesfor improving TCP performance

We can broadly group techniques for improving TCP performance in MANETS into three categories. This
classification is based on which of the layers in the protocol stack are involved, and on what sources of

feedback and other pertinent information are used. Our classification scheme is summarized in Table 4.1.

| Level | Type of Feedback \

1 TCP layer only
2 Routing agents at TCP connection endpoints
3 Routing agents at intermediate nodes

Table 4.1: Classification of TCP performance improvement techniques.

58

59

e Level 1: TCP layer. These mechanisms are implemented in the TCP sender and/or the TCP receiver.
No information is required from the routing layer or lower layers in the protocol stack. Existing TCP

options, such as selective acknowledgements, are included in this level.

e Level 2: Routing layer at TCP connection endpoints. These mechanisms utilize feedback from the
routing agents on the hosts where the TCP sender and receiver are running. Such methods may also

use the MAC-layer information that is available to these routing agents.

e Level 3: Routing agents on intermediate nodes. Mechanisms at this level require feedback supplied
by the routing agents running on one or more intermediate nodes along the route established by the

TCP connection.

Level 1 solutions have the advantage of being end-to-end mechanisms. The additional complexity of in-
teracting directly with the routing layer or of requiring information from other MANET nodes is avoided. To
the extent that level 1 solutions provide comparable benefits to methods requiring information not available
at the transport layer, we believe they are to be preferred.

In this section, we elaborate on the framework for TCP performance mechanisms outlined above, and
we show where in this hierarchy existing methods and current research fit. We then describe two novel layer

1 techniques that we have designed and implemented.

4.1.1 TCP layer mechanisms

Even though MANET routing protocols are designed to repair broken routes quickly, route failure is often a
source of packet delays and packet drops. Significant reordering of packets may occur as well. This suggests
that mechanisms designed to avoid unnecessary retransmit timeouts, packet retransmissions, and reductions
in the congestion window, may be promising means of improving TCP performance. TCP layer methods
will generally require changes to the TCP sender, the TCP receiver, or both. However, existing TCP options

may also offer performance benefits, so the use of these mechanisms should be considered, too.

60

Using existing TCP options

In this section, we discuss two existing TCP options that may be used to improve TCP performance in

MANETS, selective acknowledgements and delayed acknowledgements.

Selective acknowledgements: In the Reno version of TCP, a duplicate ACK does not tell the sender which
packet or packets are still outstanding, only that one or more packets have been dropped or delayed. The best
the sender can do is retransmit at most one missing packet per round trip time (RTT) or risk retransmitting
a packet that may already have been received. The selective acknowledgements (SACK) option allows the
receiver to specify which non-consecutive packets have been received. Frequent route changes ina MANET
can be expected to cause packet losses, and these losses may result in duplicate ACKSs that trigger the TCP
sender’s fast retransmit mechanism. By enabling the sender to more accurately infer which packets are

missing, SACK should reduce the number of unnecessary packet retransmissions.

Delayed acknowledgements: In networks where bandwidth is a scarce commaodity, it makes sense to reduce
traffic whenever possible. The use of delayed ACKSs is expected to help by reducing the volume of ACK
traffic in normal network conditions. However, the real benefit of delayed ACKSs should come when routes
break. During route reconstruction, data packets may be sitting in a queue at the source or at an intermediate
node. If the route is repaired quickly enough that the data packets have not yet been flushed from the buffer,
then all of these packets will arrive at the TCP receiver in quick succession. With delayed ACKs, the receiver
sends fewer acknowledgements for these packets. This will, in turn, enable the TCP sender to increase its

congestion window more quickly and retransmit fewer packets.

4.1.2 Routing layer mechanisms

These techniques utilize information not directly available to TCP. Level 2 methods do not require any sort
of signaling or interaction with intermediate nodes, so they should generally be somewhat less complex than

level 3 mechanisms.

61

Using feedback from routing agents at TCP connection end points

The routing agent running on the host where the TCP sender resides can be an immediate source of feedback
to the sender. Likewise, the TCP receiver can get routing layer information directly from the agent running

on its host. Here we give some examples of possible routing layer feedback.

Feedback to the TCP sender: When the sender’s routing agent is unable to deliver a TCP data packet
because the first link in the route to the destination is down, the agent can inform the sender of the route
failure immediately. This is a “cheap” form of explicit link failure notification in that there are no route
error packets involved. Similarly, when the routing agent learns through an update that the route has been
re-established, this information can be passed directly to the sender.

Another useful item of information the routing agent has is the number of packets in the routing agent’s
send buffer waiting for routes. The number of packets in the MAC interface queue is also of interest. If
the number of packets queued is high, the TCP sender may elect to reduce its sending rate until the level of
buffering has dropped off.

Routing packets through a MANET is a store-and-forward process, so the number of packets that can
profitably be in flight in a MANET is to some degree a function of the path length from sender to receiver.
Therefore, the number of hops to the destination may be of interest to the TCP sender if that information

can be used to set a reasonable size for the congestion window.

Feedback to the TCP receiver: If the TCP receiver can determine current conditions in the network from
the “experience” of the data packets that have arrived recently, it can relay this information back to the
TCP sender. Based on the earlier work on the DECbit scheme [58], the addition of Explicit Congestion
Notification (ECN) to TCP was proposed for this purpose [23]. If a router along the path to the destination
is congested or is close to congestion, it sets the ECN bit in the header of a data packet. The receiver
echoes the notification to the sender in an ACK. This mechanism allows TCP to perform congestion control

proactively.

62

Using feedback from routing agents at intermediate nodes

This is the level at which the solutions such as ELFN and TCP-F, described in Section 2.2.3, fit in our hi-
erarchy. These methods rely on route failure (and route re-establishment) notifications from intermediate
nodes to reach the sender, which then modifies its behavior accordingly. Another level 3 approach to im-
proving TCP performance might involve using knowledge of routing agent or MAC layer queue lengths at

intermediate nodes, for example to adjust TCP’s sending rate before congestion occurs.

4.1.3 Proposed TCP sender side options

The TCP sender is designed to adapt to network conditions by tracking the acknowledgements returned by
the receiver. The timing of these ACKs and the order in which they are received are clues that the sender
uses to infer what is occurring elsewhere in the network. How these clues are interpreted by the sender has
a major impact on TCP performance. In MANETS, new heuristics can be used to elicit sender behavior
that is conducive to good TCP performance. We have designed and implemented two mechanisms that use

sender-based heuristics: the hold-down timer and the fixed RTO.

Hold-down timer

Sometimes the packet delay, as opposed to packet loss, due to a route failure can cause an ACK to arrive
so late that the retransmit timer has already expired. In the description of the delayed acknowledgements
option above, we noted that if route repair happens quickly, then any data packets that were buffered at the
source or at an intermediate node will arrive at the receiver in rapid order. The same thing can happen for
ACKs buffered during route repair. Once the route has been re-established, these ACKs will arrive at the
TCP sender in quick succession. If the retransmit timer has expired, the packet corresponding to the first of
the tardy ACKs will already have been retransmitted. If the ACKSs arrive in order, the first one will trigger
the retransmission of the packet corresponding to the second tardy ACK, the second one will trigger yet
another retransmission, and so on.

In order to address this problem, we designed a method which utilizes a hold-down timer. Figure 4.1

illustrates the technique. When a timeout occurs, the length of this timer is set equal to the retransmit timeout

63

Src Dest

N

RTO

Timer Expires — —i R1

R2 <
Hold—-Down Ra <7
Timer RaT

Hold-Down Ends —

Figure 4.1: TCP data packet/ACK transmission diagram showing tardy ACKs arriving during the hold-down
timer interval. The retransmit timer expires before the ACK for packet 1 arrives, so packet 1 is retransmitted
(the event labeled R1). In normal TCP operation, the arrival of the ACK for packet 1 will trigger the
retransmission of packet 2 (event R2), and the arrival of the ACK for packet 2 will trigger the retransmission
of packets 3 and 4 (events R3 and R4). With the hold-down timer, the tardy ACK for packet 1 does not cause
packet 2 to be retransmitted. Similarly, the late-arriving ACK for packet 2 does not cause packets 3 and 4
to be retransmitted. Instead, since the ACKs for packets 2 - 4 are all received before the hold-down timer
expires, no further packet retransmissions occur.

interval (RTO) prior to the timeout. Since the RTO is doubled following a timeout, the hold-down period is
one-half of the new timeout period. The first packet in the window is immediately retransmitted as usual.
During the hold-down interval, any incoming ACKSs are processed in the normal way except that they do not
trigger further packet transmissions. If the hold-down timer expires before the first packet in the window
has been acknowledged, then TCP reverts to its normal behavior during the second half of the retransmit
timeout period, i.e. packets will be retransmitted when the outstanding ACK is received. Otherwise, any
packets that are ACKed during the hold-down interval will not have to be retransmitted. If all the packets
in the window are ACKed before the hold-down interval ends, the hold-down timer is cancelled and normal

TCP operation is resumed.

64

New

ACK 3 Duplicate ACKs

Recovery
ACK

FAST

TIMEOUT

RTO Doubled RECQV ERY

Timeout

Timeout

Figure 4.2: Simplified TCP state diagram illustrating normal operation of the TCP Reno protocol after the
connection has been established. The RTO is doubled on the first timeout and every consecutive timeout
thereafter.

Fixed retransmit timeout interval

In the event of a retransmit timeout, TCP retransmits the oldest unacknowledged packet and doubles the
retransmit timeout interval (RTO). This process is repeated until an ACK for the retransmitted packet has
been received. This exponential backoff of the RTO enables TCP to handle network congestion gracefully.
However, in a MANET, the loss of packets (or ACKs) may be caused by temporary route loss as well as
network congestion. Since routes are likely to be broken frequently in high node mobility environments,
routing algorithms for MANETS are designed to repair broken routes quickly. To take advantage of this
capability, it is intuitive to let a TCP sender retransmit the unacknowledged packet at periodic intervals
rather than having to wait increasingly long periods of time between retransmissions.

Therefore, we modified the TCP sender, employing a heuristic to distinguish between route failures and
congestion without relying on feedback from other network nodes. When timeouts occur consecutively, i.e.
the missing ACK is not received before the second RTO expires, this is taken to be evidence of a route loss.

The unacknowledged packet is retransmitted again but the RTO is not doubled a second time. The RTO

65

3 Duplicate ACKs

New
ACK
Recovery
ACK

FAST
RECOVERY

TIMEOUT

RTO Fixed

Timeout
TIMEOUT

RTO Doubled

Figure 4.3: Simplified TCP state diagram illustrating the fixed-RTO protocol modification. The RTO is
doubled on the first timeout, but remains fixed on succeeding consecutive timeouts.

remains fixed until the route is re-established and the retransmitted packet is acknowledged. The simplified

state diagrams shown in Figures 4.2 and 4.3 highlight the change to the sender.

4.2 TCP performance analysis

In this section, we present the results of a simulation-based comparison of TCP performance over three
MANET routing protocols: the on-demand DSR and AODV protocols, and the hybrid ADV protocol. The
objectives of this study were two-fold. In addition to evaluating the relative performances of these routing
protocols, we wanted to test the effectiveness of our proposed sender-side heuristics. We varied the number
of TCP connections, over each of which an FTP file transfer was conducted, and we included a background
UDP traffic load from multiple constant-bit-rate (CBR) sources.

In the sections which follow, we describe the simulation methods we employed, and we define our
performance metrics. We then present the results of the study, and we give a detailed analysis of our

observations.

66

4.2.1 Experimental methods

The simulation environment was as described in Section 3.4.1. All routing protocol parameters were as
given in Tables 3.6, 3.7, and 3.8, with the exception that the ADV buffer timeout used was 30 seconds.
We simulated a network of 50 nodes moving in a 1000m x 1000m square field. Background traffic loads
were generated by 10 and 40 CBR connections, and the CBR packet sizes were fixed at 512 bytes. After a
warm-up time of 100 seconds, one or more TCP connections were established over each of which an FTP
file transfer was conducted for 900 seconds. The TCP packet size was 1460 bytes, and the maximum size
of both the send and receive windows was 8. Since routing protocol performance is sensitive to movement
patterns, 50 different mobility patterns (scenarios) were generated and performance results were averaged
over these scenarios.

In each simulation run, we measured connect time, throughput, and goodput. Connect time is the time it
takes to deliver the first TCP packet. Short connect times are important for some types of TCP traffic such as
HTTP. Throughput is computed as the amount of data transferred by TCP divided by 900 seconds, the time
interval from the end of the warm-up period to the end of the simulation. This does not include redundant
packet receipts due to unnecessary packet retransmissions and packet replication in the network. Goodput
is the ratio of TCP packets successfully delivered to the total number of TCP packets transmitted. We
measured routing protocol overhead in packets per second and bytes per second at the IP layer as described
in Section 3.4.1. We also measured MAC-layer routing overhead, defined as the total number of routing
packets transmitted per second at the MAC layer. This includes the RTS, CTS, and ACK packets as well as

the IP layer routing packets.

4.2.2 Performance results for 1 TCP connection

We performed a series of five simulation runs. Each simulation run tested a different technique or combi-
nation of techniques: TCP Reno, Reno with SACK, Reno with SACK and delayed ACKs, fixed RTO on
consecutive timeouts plus SACK and delayed ACKs, and a hold-down timer plus fixed RTO and SACK and
delayed ACKs. In each run, a set of performance measurements were made for each of the three routing

protocols at each of several background traffic loads from 10 CBR and 40 CBR connections.

67

100.0 0.5 1

— A—AADV A—AADV
3 AODV 6— AODV
& DSR 04 1 099 | DSR
_8’ é—’ W—'
= 10/
7 10 =3
2 =03 5 098
~ (=% Q
1] = °
E g 3
= —— S o2 O o097
g * * £ 97
2 10} \/ N
< : o
f=
3 2
g 01 A—A ADV 096 |-
3 AODV
[DSR
01 0 095
o « - Q Q o - - Q Q o o« + o o
O N N
& OO g8 & o I, & S I A
r &S & & S & & & ¥
n AS N AN N A\
< & < N <
300 200 1000
A—AADV A—4A ADV
o AODV n AODV
= + Q
g 250 DSR 8 DSR @ 800 -
=
= < 150 K
7 K e
8 200 f 3 E
2 A‘\
< < [N _
g 5 g oo
[e] o
150 100 g
g 2 °
3 El B 400
@ 100 F 4 " & A 8
- -
[3 & 4 A Q
) ES 2 ol A—AADV
3 osof = = AODV
B e DSR
0 0 0
o - A+ Q Q o - A+ Q Q o A+ A+ Q Q
N N &
P & & & k2 e & 5 & k) ¢ & & 3 3
2 & & X N < X & <
<& & & & &

Figure 4.4: Connect times, throughputs, goodputs, and routing overhead for 1 TCP connection with a 50
Kbps background load from 10 CBR connections.

Figures 4.4 and 4.5 show the connect times, throughputs, goodputs, and routing overheads, averaged
over the 50 scenarios, observed for each of the protocols for a 50 Kbps background traffic load generated
by 10 and 40 CBR connections. (Results for background loads of 100 Kbps and 200 Kbps are given in
Appendix B.) Tables 4.2 and 4.3 show the throughput results expressed as percent changes relative to the
baseline TCP Reno results. To compare the results from any two combinations of techniques, we paired the
observed throughputs attained by these methods for each of the 50 scenarios and applied the paired t-test.

Differences shown in bold print have 95% confidence intervals that do not include zero.

DSR results

For the TCP Reno baseline with the DSR routing algorithm and a background traffic load of 50 Kbps from
10 CBR connections, the throughputs we observed varied from 0.05 to 0.5 Mbps. This is less than the

range of approximately 0 to 0.9 Mbps reported by Holland et al. [29] for a mean node speed of 10 m/s. In

68

o
o
N

100.0

A—A ADV
AODV
0.99 DSR 1

A—i ADV
AODV
DSR

=3
=

100 |

03 0.98 -

097 | W]

01| A—AADV] 096 |-

Goodput

0.2
1.0 | Ak ——————— 1

TCP Connect Time (sec) [log scale]
TCP Throughput (Mbps)

0.1 0 0.95

1000

@
S
1S3
n
o
3

N
a
S

@

S

S]

)
=
S
>
Q
<
N
a
3

o
S
S]

H

=]

3
a
S
3

o
3

IP Layer Routing Overhead (pkt/s)
N
8
>
s}
<

g
IP Layer Routing Overhead (Kbps)
S
8
MAC Layer Overhead (pkt/s)

a
S

=)
o
o

& d— o{- Q Q O O‘l- d— Q Q
& o & 2 K & &) >
=)

Figure 4.5: Connect times, throughputs, goodputs, and routing overhead for 1 TCP connection with a 50
Kbps background load from 40 CBR connections.

Table 4.2: Percent increases in throughput relative to TCP Reno for 50 Kbps 10-CBR background.

| Simulation Run | ADV | AODV | DSR |
SACK -1.3 07| -16
SACK + delayed ACKs 3.7 51 2.3
SACK + fixed RTO + delayed ACKs 3.3 81| 674

SACK + fixed RTO + hold-down timer 2.2 99 | 86.4
+ delayed ACKs

Table 4.3: Percent increases in throughput relative to TCP Reno for 50 Kbps 40-CBR background.

| Simulation Run | ADV | AODV | DSR |
SACK -5.7 06| 67
SACK + delayed ACKs 1.6 4.1 9.6

SACK + fixed RTO + delayed ACKs 2.2 15.6 | 47.8
SACK + fixed RTO + hold-down timer 3.7 20.4 | 59.9
+ delayed ACKs

69

their study, however, there was no competition for bandwidth from background traffic. Furthermore, their
mobility scenarios had a higher node density and fewer route failures. For some scenarios, we observed
connect times in excess of 3 minutes. Large connect times were also observed by Holland et al., who
described a scenario in which throughput was zero over a 2 minute interval.

Referring to the throughput results for the 50 Kbps 10-CBR background shown in Figure 4.4, the most
marked change was the increase observed for DSR. In the TCP Reno run, DSR throughput was about
55% that of the other protocols. With a lighter background traffic load, routes in the network are more
likely to be stale, and stale routes are troublesome for DSR. The stale route problem is very evident when
we consider the average connect times in Figure 4.4. Comparing the base case to the run in which we
fixed the retransmit timeout interval in the event of consecutive timeouts, we see that the connect time for
DSR dropped dramatically from over 30 seconds to about 5 seconds. At the same time, DSR throughput
increased by 67%. The fixed-RTO technique continued to yield a 70-75% gain in DSR throughput as the
10-CBR traffic increased from 50 Kbps to 200 Kbps as shown in Figure 4.7. Significant throughput gains
were also observed for the 40-CBR case as shown in Figure 4.5. The goal of fixing the RTO was to reduce
the impact of route unavailability. It appears this technique was particularly effective in mitigating the stale
route problem for DSR.

Adding the hold-down timer to the other techniques provided an additional increase in throughput. For
10 CBR connections, an additional gain of 20% was observed for all traffic loads, while in the 40-CBR case

the gain was around 12% for a 50 Kbps load, decreasing to about 5% for a 200 Kbps load.

AODV results

The fixed-RTO technique, combined with SACK and delayed ACKSs, also yielded increased throughput for
AQDV, although the gains were much smaller than those observed for DSR. For the 10-CBR background,
the gain in throughput was approximately 8%. Interestingly, the increase in throughput for the 40-CBR case
was about twice as large, nearly 16%. As Figures 4.4 and 4.5 show, the number of AODV routing packets

increased nearly 70% when the number of CBR connections was increased from 10 to 40. To the extent that

70

this additional routing traffic results in increased packet delays, we would expect the fixed-RTO technique
to be of relatively greater benefit.

In Figures B.1 through B.4 in Appendix B, we see that as the background traffic load was increased, the
gain in throughput remained the same, about 8%, for 10 CBR connections, while the gain in the 40-CBR
case grew to 48% for a 200 Kbps load.

The hold-down timer yielded only marginal improvements in throughput in most cases. However, in the

case of a 200 Kbps 40-CBR load, a gain of 15% in throughput was observed.

ADV results

The increases in throughput that we observed for ADV did not exceed 4%. It appears ADV was performing
as well as possible because, although the application of these techniques tended to minimize the performance
differences among the protocols, in no case did the other protocols exhibit a higher level of throughput than
ADV. Furthermore, in the 40-CBR case, ADV clearly outperforms AODV and DSR regardless of which
techniques are used. We observed this same result at higher background traffic loads. As shown in Figure
B.2, ADV throughput was 17% to 52% greater than that of the other protocols for a 100 Kbps load and 40

connections.

Goodput and routing overhead

All three protocols exhibited very high goodputs, ranging from 97% to 98%. It is noteworthy that the
proposed fixed-RTO technique did not significantly lessen the observed goodputs.

The routing overhead for DSR increased significantly in response to the fixed-RTO and hold-down
timer techniques. A 50% increase in the MAC layer overhead was observed for DSR in the 10-CBR case.
The increased overhead is an expected result of the large gains in throughput seen for DSR. The routing
overheads for ADV and AODV, on the other hand, were not affected by the different techniques.

In earlier experiments not included in this work, we have observed that DSR and AODV seem to have
comparable MAC layer overheads for CBR traffic. However for TCP traffic, both AODV and ADV have

lower overhead.

500

71

100.0 05

_ A—4A ADV A—AADV
2 AODV g AODV
2 04y DSR £ 400 - DSR A
=) () =3
2 100 § E
° ’ £ <
2 S 031 L
~ Q
: g S

o
= 3 =4
= o =
- =02 5 200 -
s E g
c 3 o -
; 2 g
0 A—AADV 01 S 100 - , .
8 AODV 7 A
= DSR =

0 0

01
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Background CBR Traffic (Kbps)

Background CBR Traffic (Kbps) Background CBR Traffic (Kbps)

Figure 4.6: Connect times, throughputs, and routing overhead for 1 TCP Reno connection with a 10-CBR
background.

4.2.3 Comparison of different TCP options

The use of TCP’s selective acknowledgements and delayed acknowledgements options provided modest
performance gains, with DSR benefiting the most for a 50 Kbps background traffic load. Throughput gains
of 10% to 12% were observed for AODV and DSR at higher traffic loads. Adding the fixed-RTO technique
to TCP Reno, along with the SACK and delayed ACK options, yielded the majority of the performance gains
that were achieved. While the hold-down timer mechanism provided an additional increase in performance
for 1 TCP connection, this benefit was not observed in our initial simulations with multiple TCP connections.
Therefore, in the remainder of this chapter we will focus on the performance benefits of combining TCP
Reno with fixed RTO, SACK, and delayed ACKSs. For convenience, we will refer to this combination as
TCP Reno-F.

Figures 4.6 and 4.8 show the connect times, throughputs, goodputs, and routing overheads, averaged
over the 50 scenarios, observed for each of the protocols for 1 TCP Reno connection with background
traffic loads of 50, 100, 150, and 200 Kbps generated by 10 and 40 CBR connections. Figures 4.7 and 4.9

give the results for 1 TCP Reno-F connection.

72

100.0 0.5 500
_ A—AADV A—4 ADV A—AADV
) AODV AODV Q AODV
g DSR 2 DSR
2 04} DSR X 400 —
g g 3
= 100 2 g
o ~ =
2 5 03t 5 300 |
~ Q
o £ o}
E g 0.2 g 200
s} < 3 [
8 1ol A—‘/‘\‘ E %
5 O o
(§) = >
5 o 3 w0 [Fa— G
O o
E o
01 0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Background CBR Traffic (Kbps) Background CBR Traffic (Kbps) Background CBR Traffic (Kbps)

Figure 4.7: Connect times, throughputs, and routing overhead for 1 TCP Reno-F connection with a 10-CBR
background.

100.0 0.5 500
T A—AADV A ADV _ A—AADV
T AODV AODV q AODV
& DSR _o4r DSR & 400 - DSR
g 2 H
@ §- 0.3 § 300 -
o < o}
£] g
g Z 02 S 200
3] =)
g w0y ‘\A\‘_“ E %
g O g
© T s S 100 |
o ’ - A
O o
et o
0.1 ‘ ‘ ‘ . 0 ‘ ‘ s ‘ 0 . ‘ ‘ ‘
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Background CBR Traffic (Kbps) Background CBR Traffic (Kbps) Background CBR Traffic (Kbps)

Figure 4.8: Connect times, throughputs, and routing overhead for 1 TCP Reno connection with a 40-CBR
background.

100.0 0.5 500
— A—4 ADV A—A ADV
° ADV @ AODV
o AODV AODV 2
b DSR o4y DSR £ a0 DSR
g g 3
= ie) @
5 10 s 2
@ og- 03t 5 300 |
o £ o}
E g 0.2 g 200
g £ 3
g 10} A\‘\‘—‘ N [
& 0 g
N F 0.1 g 100 F
o - A
O o
E o
01 0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Background CBR Traffic (Kbps) Background CBR Traffic (Kbps) Background CBR Traffic (Kbps)

Figure 4.9: Connect times, throughputs, and routing overhead for 1 TCP Reno-F connection with a 40-CBR
background.

73

15 4 15

1 1 —— Available capacity l ‘ ‘ —— Available capacity

Reno throughput Reno-F throughput

L Wh

0 200 400 600 1000 0 200 400 600
Simulation Time (sec) Simulation Time (sec)

-
.
T

Throughput (Mbps)
Throughput (Mbps)

ed
v

_—

——

P

*‘:; Y

1000

Figure 4.10: Throughput compared to capacity for a TCP Reno and TCP Reno-F connection with the AODV
routing protocol and no background traffic. Capacity = 0.486 Mbps. Reno throughput = 0.308 Mbps. Reno-
F throughput = 0.361 Mbps.

4.3 TCP Reno-F

The analysis in Section 4.2 has shown that the combination of TCP’s selective acknowledgements and
delayed acknowledgements options with our proposed sender-side heuristic, fixed RTO, can yield substantial
improvements in TCP performance. We call this combination of performance-enhancement techniques the
TCP Reno-F protocol. While no TCP variant will succeed in utilizing all the available capacity of a MANET,
the Reno-F protocol does a better job of adapting a TCP flow to the changes in a MANET’s capacity than
does TCP Reno.

In this section, we take a closer look at Reno-F. For this analysis, we utilized two mobility scenarios from
Section 4.2 — one for which the TCP Reno performance observed for each routing protocol was average, and
another for which the routing protocols yielded the worst Reno performance. Using the average scenario,
we show how the fixed-RTO technique works to improve TCP performance. We also discuss various factors
which determine the effectiveness of fixed RTO. In particular, we utilize the worst-case scenario to explain
why fixed RTO improves the performance of an on-demand protocol such as AODV, but provides little or

no benefit when a proactive protocol like ADV is used.

74

4.3.1 Average case with no background traffic

The throughputs shown in Figure 4.10 were observed for a single TCP connection for the average mobility
scenario. Because the benefit of Reno-F is generally greater for an on-demand protocol, AODV was chosen
to make this example clearer. To keep the analysis simple, no background network traffic was included
and the TCP connection was started at the beginning of the simulation. The expected throughput for this
particular connection and mobility scenario was computed on the basis of the hop count between sender and
receiver, as explained in Section 1.3. In this example, Reno-F yields a 17% increase in TCP throughput.

Figures 4.11 and 4.12 show the congestion window sizes and route repair times observed for the TCP
connection over the course of this scenario. The upper graph shows the congestion window size as a function
of time along with two sets of hash marks; the upper (darker) hash marks denote retransmissions and the
lower (lighter) hash marks denote transmission of a new packet by the sender. The plotted window size is a
5-second moving average, so non-integral window sizes appear. A 5-second interval was chosen to smooth
the plot without losing important detail. The lower graph shows the route repair times observed during the
simulation; the horizontal dotted line indicates the average route repair time.

When a route failure interrupts a TCP flow, it is important that the TCP sender learn that the route has
been repaired as soon as possible so as to minimize the duration of the interruption. As noted in [45],
when multiple consecutive retransmissions of the same packet are lost because the sender and receiver
are temporarily disconnected, the doubling of the interval between retransmissions can result in extended
periods of inactivity even after the connection has been restored. Referring to Figure 4.11, at approximately
time 300, a lengthy route failure causes the TCP Reno sender to stall. The congestion window size falls to its
minimum value of 1 and TCP experiences a series of retransmit timeouts which occur at increasingly wider
intervals. Packet flow is not re-established for some 50 seconds. In Figure 4.12, the route failure results in
more frequent packet retransmissions, enabling the TCP Reno-F sender to recognize the repaired route and
resume packet flow quickly.

Thus, an important benefit of the fixed-RTO technique is that it allows the TCP sender to avoid waiting

for ever longer periods of time before attempting to retransmit the next unacknowledged packet. Because

75

10 10
LU LY Ot O RN TTO T T L A UL TR TR R UL AVEIY DR LRI [LLLU i RN IRURRRNNT UL UL LT D TR TR TR I LRI T T TR IR |
8 8
(&3 (&3
P N
(2] (2]
= =
k] 6 k] 6
£ £
= =
= =
2 S
g 4 3 44
j=2 j=2
<3 <3
o o
o o
2 2
U
(0] (0]
(o] 200 400 600 800 1000 (o] 200 400 600 800 1000
Simulation Time (sec) Simulation Time (sec)

Route Repair Time (sec) [log scale]

Route Repair Time (sec) [log scale]
P
o
o

[¢] 100 200 300 400 500 600 700 800 900 1000 [¢] 100 200 300 400 500 600 700 800 900 1000
Simulation Time (sec) Simulation Time (sec)

Figure 4.11: AODV congestion window sizes Figure 4.12: AODV congestion window sizes
and route repair times for 1 TCP Reno connec- and route repair times for 1 TCP Reno-F con-
tion with no background traffic load. Average nection with no background traffic load. Aver-
route repair time = 0.597 seconds. age route repair time = 0.405 seconds.

Reno-F fixes the interval between retransmissions, the TCP sender is probing the network in a manner
similar to the ELFN scheme [29]. But because the probe interval is equal to the retransmit timeout interval,
which is based on the estimated RTT, the fixed-RTO method is inherently adaptive.

Another benefit of more frequent packet retransmissions is the potential for reducing average route repair
time by stimulating the route discovery mechanism of an on-demand protocol. As shown in Figure 4.12,
AQDYV is able to repair routes more quickly with Reno-F. In this example, the average time taken by AODV
to re-establish a broken route is reduced by 32% and there are fewer extended route failures. In particular, we
see that the route repair delay at time 300 is much shorter as a result of the increased rate of retransmissions.

While TCP throughput is higher overall with Reno-F in this example, there are intervals during the
simulation run for which TCP Reno is achieving a higher throughput. It is instructive to consider the reasons
for this. Referring to Figure 4.10, consider the interval from about time 80 to 110. In this instance, Reno-F
sustains a throughput of approximately 500 Kbps, but Reno is able to reach throughputs of around 700 Kbps

for much of the period. Looking at the available capacity shown in Figure 4.10 and referring to Table 1.1,

76

we deduce that the shortest path between the TCP sender and receiver was two hops in length during this
period.

In both the Reno and Reno-F runs, AODV is using a 3-hop route at time 80. However, because the
precise sequence of route discoveries during the first 80 seconds of the simulation run is different for Reno
and Reno-F, these paths are not identical. The route that Reno-F is using at time 80 is quite stable; it does
not fail until time 110. The Reno route is unstable, however, and it breaks at time 82. AODV repairs the
broken route, replacing it with a new route of the optimal length 2. Although additional failures of the Reno
route occur before time 110, in each instance the broken route is replaced by another path of length 2. So,
TCP throughput is higher for Reno than for Reno-F during this period of time. This is an example of how
the properties of the routing protocol being used can limit the effectiveness of a transport layer protocol. In
this instance, the fact that AODV fails to use the shortest possible route available to it in the Reno-F run is a

routing protocol issue, and not a reflection on Reno-F.

4.3.2 Average case with background traffic

We take our analysis of this example a step further by adding a 100 Kbps background traffic load from 10
CBR connections. As shown in Figure 4.13, the TCP connection is not able to use as much of the available
capacity when other network traffic is present. Nevertheless, Reno-F still provides a throughput gain of
about 16%. The reduction in the average route repair delay is more modest than in the no-background
case, however, about 17%. This is to be expected because the additional routing activity associated with
the background traffic means that more routing information is being propagated through the network via
route requests and replies, and this is likely to reduce the route discovery burden for the TCP connection.
As a result, route repair delays will be shorter and there will be less room for improvement. For example,
when we compare the Reno runs in Figures 4.10 and 4.13, we see that the extended period of almost no
throughput from around time 300 to 350 in the no-background case is eliminated when the CBR traffic is
added. It should be noted that, although TCP throughput increases are associated with reduced route repair
times, it is not possible to predict the magnitude of a throughput increase from the corresponding reduction

in route repair delay, and vice versa.

77

15 | 1 15
—— Available capacity —— Available capacity
Reno throughput Reno-F throughput
) @
£ 1 £ 1
= =
5 5
a aQ
S = ‘
3 Ei
o o
= =
= o5 1 = os ‘ } 1
0 m M“ ' o I H ' ! \
0 200 400 600 800 1000 0 200 400 600 800 1000
Simulation Time (sec) Simulation Time (sec)

Figure 4.13: Throughput compared to capacity for a TCP Reno and TCP Reno-F connection with the AODV
routing protocol and a 100 Kbps background load from 10 CBR connections. Capacity = 0.486 Mbps. Reno
throughput = 0.221 Mbps. Reno-F throughput = 0.257 Mbps. Average Reno route repair time = 0.304
seconds. Average Reno-F route repair time = 0.251 seconds.

4.3.3 Worst case

To illustrate how Reno-F can impact the TCP performance of AODV while providing only a modest benefit
to ADV, we consider the worst-case mobility scenario. In this scenario, the length of the shortest possible
path between the TCP sender and receiver nodes changed fairly frequently and tended to be a bit long, often
5 or 6 hops or more. There was a 50 Kbps background network load from 40 different CBR flows, and the
single TCP connection was established after warming up the network for 100 seconds.

In Figure 4.14, at approximately time 375 a route failure occurs causing the congestion window size
to drop to its minimum value of one. Retransmit timeouts follow at progressively longer intervals until the
maximum of eight backoffs is reached. The upper hash marks indicate that the sender is probing the network
at increasingly longer intervals; the absence of hash marks in the lower set indicates the lack of progress
by the TCP sender. The route is not successfully re-established until about time 600, and during this period
the observed route repair times shown in the lower graph are generally much longer than those before the
route failure at time 375. Longer route repair times and fewer attempts to utilize a repaired route before
node mobility breaks it again cause the TCP sender to be stuck in retransmission mode as indicated by a
congestion window of size 1 and the big gap in the lower hash marks.

With the use of Reno-F in Figure 4.15, packet retransmissions due to timeouts are more frequent, which

10

Congestion Window Size

160 200 300 400 500 600 700 800 900 1000
Simulation Time (sec)

Route Repair Time (sec) [log scale]

400 500 600 700 800 900
Simulation Time (sec)

Figure 4.14: AODV congestion window sizes
and route repair times for 1 TCP Reno connec-
tion with a 50 Kbps background load from 40
CBR connections. Average route repair time =
1.627 seconds. Throughput = 0.0914 Mbps.

10
T T T T T T R A R T T I O TR R T R}
O O N 1 11| OO 1 AN U 1 11 O 0 WO 0 1

Congestion Window Size

o L

0]
100 200 300 400 500 600 700 800 900 1000
Simulation Time (sec)

o)

I+

& 100.00

=3

k=]

< 10.00

D

@ I 0

2 Lol T I
£ FITC I | PR T S—— e . . MO | A 1
= I ‘ i [“ ‘ Ik
5

& 0.10

o

L

3 0.01

-5 1 500 600 700 800 900 1000

Simulation Time (sec)

Figure 4.16: ADV congestion window sizes and
route repair times for 1 TCP Reno connection
with a 50 Kbps background load from 40 CBR
connections. Average route repair time = 0.900
seconds. Throughput = 0.1702 Mbps.

78

10

Congestion Window Size

o]
100 200 300 400 500 600 700 800 900 1000
Simulation Time (sec)

o
5]
& 100.00
=
2
S 10.00
8
@«
@
£ 1.00 4] ‘ ‘
g
2 o010
&
L
E]
0.01
& 100 200 300 400 500 600 700 800 900 1000

Simulation Time (sec)

Figure 4.15: AODV congestion window sizes
and route repair times for 1 TCP Reno-F con-
nection with a 50 Kbps background load from
40 CBR connections. Average route repair time
= 0.446 seconds. Throughput = 0.2023 Mbps.

10
T T Y TRy Ty T T R T Y
~F N O | VN WU | W] WOOINN | WYY 110) O U W VO

) (

Congestion Window Size

0]
100 200 300 400 500 600 700 800 900 1000
Simulation Time (sec)

100.00

10.00

1.00

Route Repair Time (sec) [log scale]

100 400 500 600 700 800
Simulation Time (sec)

Figure 4.17: ADV congestion window sizes and
route repair times for 1 TCP Reno-F connection
with a 50 Kbps background load from 40 CBR
connections. Average route repair time = 0.879
seconds. Throughput = 0.1710 Mbps.

79

in turn stimulates AODV to discover new routes to the TCP receiver more frequently, thus reducing route
repair time. Looking at the lower graphs, Reno-F reduces the average route repair delay (indicated by
horizontal lines) by more than 70% and the maximum route repair delay by more than 80%. So, the TCP
sender is able to utilize repaired routes quickly and keep the congestion window open. In contrast, we see in
Figure 4.16 that with TCP Reno, ADV is already doing a reasonable job of keeping the congestion window
open and route repair times low. On average, ADV’s proactive routing mechanism is able to repair routes
in about half the time required by AODV. As a consequence, Reno-F produces almost no reduction in route
repair time.

In summary, Reno-F, with its fixed-RTO heuristic, works well in situations where route failures are
somewhat frequent and of long duration compared to the round-trip times for TCP packets. The performance
benefits are greatest when an increased rate of packet retransmissions during route failure will stimulate the

routing protocol’s route repair mechanism to re-establish broken routes more quickly.

4.4 Analysisof TCP performance for multiple TCP connections

In the case of multiple TCP sources, we considered background traffic loads of 100 Kbps and 200 Kbps from
10 CBR and 40 CBR connections. The sender and receiver nodes were unique for each TCP connection,

although in some cases a TCP endpoint was also the endpoint of one or more CBR flows.

4.4.1 Comparison of throughputs for different TCP options

The combined throughputs of 2, 5, and 10 TCP connections with a 100 Kbps background traffic load are
shown in Figures 4.18 and 4.19.

As was observed previously for 1 TCP source, the addition of SACK and delayed ACKs to TCP Reno
resulted in modest gains (5-10%) in throughput. In most cases, ADV continued to provide the highest
throughput. As before, AODV showed decreased throughput relative to ADV and DSR as the number of
CBR connections increased from 10 to 40. Because AODV relies on its route discovery process to establish
new routes and repair broken routes, the larger number of connections results in considerably more work.

At the same time, a larger number of connections, as well as a higher volume of traffic, enables DSR to use

o 9o
© ©

o
3

TCP Throughput (Mbps)
o o o
[F N =

o

o 9o
[=N

o
w

2 TCP Connections
A—AADV
AODV
DSR
4
) - A+ Q
& & O &
& & & &
Q&

o o o
1% o e

o
>

TCP Throughput (Mbps)
o o o o o
[N R Y

o

5 TCP Connections

——
A—AADV

AODV

DSR

o A A Q
P ¢ ¢ &

¢ < F &
&

o o o
1% o e

o
=

TCP Throughput (Mbps)
o o o o o
[N R Y

o

80

10 TCP Connections
—
A—A ADV
AODV
DSR
o - - Q
B & 9 &
¢ & & &
Q‘\+

Figure 4.18: Combined throughputs for multiple TCP connections with a 100 Kbps, 10-CBR background.

-

o
©

TCP Throughput (Mbps)
o © o9 © o o o
[O O TS v

o

o
S

2 TCP Connections
A—AADV
AODV
DSR
—_ .
o - A+ Q
& & 5 &
5 @
Q*-

o o o
N o © e

o
=

TCP Throughput (Mbps)
o o o o o
[R

o

5 TCP Connections

—
A—A ADV
AODV
DSR
o A - Q
QS'Q 6?‘0 ‘?Q £
hY 3
9 &
Q\

o o o
N o © e

o
=

TCP Throughput (Mbps)
o o o o o
[I

o

10 TCP Connections
——
A—AADV
AODV
DSR
- - Q
N
& 6& Xo\rc’ g@x
9 &
Q\

Figure 4.19: Combined throughputs for multiple TCP connections with a 100 Kbps, 40-CBR background.

81

caching and snooping effectively to reduce this route discovery overhead. For 5 and 10 TCP sources, DSR
throughput was observed to be nearly as high or even higher than that of AODV, particularly for a larger
number of CBR flows.

When the fixed-RTO technique (Reno-F) was employed, the performance differences of the three pro-
tocols tended to be minimized. However, for more than two TCP connections, the benefit of fixing the RTO
in response to consecutive timeouts became great enough that AODV and DSR provided greater through-
put than did ADV. For 10 TCPs with a 10-CBR background, DSR throughput was 10% higher than ADV
throughput. This effect became even more pronounced when the background traffic load was increased to
200 Kbps as can be seen in Figures B.5 and B.6 in Appendix B.

With a 200 Kbps traffic load from 10 CBR flows, AODV and DSR both performed better relative to
ADV. As we show later, ADV provided significantly better CBR throughput than the other protocols. Con-
sequently, as the volume of CBR traffic increased, the impact of the background load on TCP throughput
was largest for ADV. For the unmodified TCP sender (i.e., no fixed RTO), ADV and AODV throughputs
were virtually the same and were higher than the DSR throughput, although this advantage decreased as the
number of TCPs was increased. With 40 CBR connections, ADV continued to provide better throughput

than AODV and DSR, which showed nearly identical performance.

4.4.2 TCP Renovs. TCP Reno-F

The connect times, throughputs, goodputs, and routing overheads observed for the various number of TCP
connections with a 100 Kbps background load from 10 CBR connections are shown in Figures 4.20 and
4.21. Given the relatively small throughput gains observed when using just the TCP options, we show only
the results obtained using TCP Reno and TCP Reno-F (the combination of SACK, delayed ACKS, and fixed
RTO). The results for a 100 Kbps 40-CBR background load and for a 200 Kbps load from 10 and 40 CBR
connections are given in Appendix B.

For TCP Reno, the goodputs we observed for all three protocols were similar, ranging from about 96%

to 98%. Reno-F decreased goodputs by about 2 percentage points.

100.0
v
©
o
"
o
L
= 100} 1
[5)
Q
2
Q
£
(=
H
2 10t —
c
8 A—4AADV
6 AODV
e DSR
01
0 2 4 6 8 10
Number of TCP Connections
500
A—4A ADV
§ AODV
g 400 | DSR b
T
@
Q
=
o 300 1
>
(0]
o
£
5 200 |]
o
14
g
S 100 R N A]
z ik
0
0 2 4 6 8 10

Number of TCP Connections

TCP Throughput (Mbps)

IP Layer Routing Overhead (Kbps)

05

04

03

02

0.1

300

[A—AADV |
AODV
L DSR 1
0 2 4 6 8 10
Number of TCP Connections
A—AADV
r AODV 4

N
a
3

[N}
IS}
1S

-
@
3

=
o
S

I3
S

0 2 4 6 8
Number of TCP Connections

TCP Goodput

MAC Layer Routing Overhead (pkt/s)

0.98

0.96

0.94

0.92

09

2000

1500

1000

500

82

A—AADV
AODV
DSR
2 4 6 8 10

Number of TCP Connections

7

A—A ADV
AODV
DSR
2 4 6 8 10

Number of TCP Connections

Figure 4.20: Connect times, throughputs, goodputs, and routing overhead for TCP Reno with a 100 Kbps

10-CBR background.

TCP Connect TIme (sec) [log scale]

IP Layer Routing Overhead (pkt/s)

100.0
A—AADV
AODV
DSR
100 k!
10k /‘\A/‘ ,
01
0 4 6 8 10
Number of TCP Connections
500
A—A ADV
AODV
400 | DSR b
300 - 1
200 - 1
100 - X N]
" 4
0
0 2 4 6 8 10

Number of TCP Connections

TCP Throughput (Mbps)

IP Layer Routing Overhead (Kbps)

1 f 1
09 1
0.8 1
07 1
06 y]
/
05 - / 1
04l /]
0.3 F 1
ozl A—AADV |
’ AODV
01t DSR B
0
0 2 4 6 8 10
Number of TCP Connections
300
A—AADV
250 AODV -
DSR

[N}
IS}
1S

-
@
3

=
o
S

I3
S

0 2 4 6 8 10
Number of TCP Connections

TCP Goodput

MAC Layer Routing Overhead (pkt/s)

0.98

0.96

0.94

83

092 A—AADV
AODV
DSR
09
0 2 4 6 8 10
Number of TCP Connections
2000

1500

1000

500

A—A ADV
AODV
DSR
2 4 6 8 10

Number of TCP Connections

Figure 4.21: Connect times, throughputs, goodputs, and routing overhead for TCP Reno-F with a 100 Kbps
10-CBR background.

84

AODV generated the highest number of routing packets, followed by DSR. Routing activity for AODV
and DSR increased as more TCPs were added, but the rate of increase diminished as the number of connec-
tions grew. The proactive ADV generated the fewest routing packets, and ADV routing activity was constant
with respect to both the number of TCP connections and the number of CBR connections.

Although the frequency of ADV routing updates remained constant, the amount of routing information
contained in the updates did increase with the number of TCPs. When measured in Kbps, ADV routing
overhead was quite a bit higher than that of the other protocols. For 1 TCP flow, ADV generated about
twice as many routing bytes per second as AODV for 40 CBR connections, again a consequence of ADV’s
proactive routing. Several researchers have pointed out that the high cost of accessing the medium in a
wireless network places a premium on a reduced number of routing packets. Hence, the larger number of

ADV routing bytes may not be a concern.

4.4.3 UDP performance

The TCP performance afforded by a routing protocol should be weighed against how well the protocol is
able to move non-TCP traffic at the same time. To assess the impact of TCP traffic on non-reactive CBR
flows, we measured the average CBR packet latency and the fraction of CBR packets successfully delivered.
The results observed for the various number of TCP connections with a 100 Kbps background load from 10
CBR connections are shown in Figures 4.22 and 4.23. The results for a 100 Kbps 40-CBR background load
and for a 200 Kbps load from 10 and 40 CBR connections are given in Appendix B.

CBR packet latencies increased as more TCPs were added, but the increases were not enough to indicate
saturation. For ADV, the use of a fixed RTO had essentially no effect on CBR latency compared to TCP
Reno. For AODV and DSR, however, the increases in TCP throughput with a fixed RTO resulted in increased
CBR packet latencies, which were 20% higher for 10 TCP connections. We found that ADV’s buffer refresh
time (buffer timeout) has a considerable impact on CBR latency. ADV latency was about twice that observed
for the other protocols, which had nearly identical latencies, and for 10 TCP connections, ADV latency was
slightly greater than 1 second compared to 0.5 second for DSR and AODV. This is in contrast to the results

reported by [12] and also shown in Chapter 3, in which ADV latencies were lower than those of AODV and

85

15 15
A—AADV A—AADV
AODV AODV
DSR DSR
g 1t o gl
A2 (2
> >
Qo o
c =
2 o}
@ 5]
- —
o 14
m 05 m 05
O O
0 0
0 2 4 6 8 10 0 2 4 6 8 10
Number of TCP Connections Number of TCP Connections

Figure 4.22: CBR packet latencies for TCP Reno and Reno-F with a 100 Kbps background load from 10
CBR connections

,_\
1=}
15}

100

90 -
80

70

o
S

ol \

70t
60 60
50 50
40 f s

30 30 -

CBR Packet Delivery Fraction (%)
CBR Packet Delivery Fraction (%)

20 A—A ADV R 20 - A—A ADV
AODV AODV
07 DSR] 10 DSR]
0 . : ! ! : 0 ! : ! ! :
0 2 4 6 8 10 0 2 4 6 8 10
Number of TCP Connections Number of TCP Connections

Figure 4.23: CBR packet delivery fractions for TCP Reno and Reno-F with a 100 Kbps background load
from 10 CBR connections.

86

DSR. In that study, however, the CBR packet size was only 64 bytes, and a short buffer refresh time of 1
second was used for ADV.

Compared to the on-demand protocols, ADV did a much better job of handling the background CBR
flows in terms of packet delivery fraction. With 10 TCP traffic sources, ADV delivered 70-75% of the CBR
packets compared to about 60% for AODV and 50% for DSR. For only 2 TCPs, ADV achieved a delivery
fraction above 90% for 10 CBR flows and in excess of 95% for 40 CBR flows. AODV outperformed DSR in
all cases, the observed difference increasing with the number of TCP and CBR connections. As in the case
of packet latency, the use of a fixed RTO had little or no effect on ADV’s delivery fractions compared to
TCP Reno. Packet delivery rates were 10-20% lower for AODV and DSR with a fixed RTO, again a result

of the higher volume of TCP traffic.

4.4.4 Performance impact of DSR route replies from cache

In their TCP performance experiments, Holland et al. [29] noted that simply turning off DSR’s route replies
from cache yielded twice as much TCP throughput for a single connection. To confirm this observation, we
measured DSR performance for 1 TCP connection with a 100 Kbps 10-CBR background load. The results
are given in Table 4.4. We observed a 100% increase in throughput for TCP Reno when DSR’s route replies
from cache were disabled, nearly the same performance gain as was achieved by using Reno-F with DSR’s
route replies from cache turned on. It is noteworthy, however, that with route replies from cache turned off,
DSR still attained a 14% increase in TCP throughput with Reno-F.

Factoring out the disadvantage that DSR incurs when route replies are made from a route cache with
stale entries, we have observed that AODV and DSR derive roughly the same performance benefits from
TCP Reno-F. Therefore, in the remainder of this dissertation, we will include only one on-demand routing

protocol, AODV, in our performance analyses.

87

Table 4.4: DSR performance with route replies from cache turned on and off. For 1 TCP connection with a
100 Kbps background load from 10 CBR sources.

Performance Metric Cache Replies On | Cache Replies Off
Reno | Reno-F | Reno | Reno-F
TCP throughput (Mbps) 0.1246 | 0.2567 0.2502 | 0.2856
CBR packet latency (s) 0.13 0.22 0.35 0.35
CBR delivery fraction (%) | 82.79 | 77.71 84.65 | 84.56

45 Effect of the buffer refresh time on TCP performance

In this section, we assess the impact of ADV’s buffer refresh time on TCP performance. The buffer refresh
time is the maximum length of time that ADV can buffer a packet while a route is broken or unavailable.
The fact that ADV buffers packets at intermediate nodes means that the performance impact of the buffer
refresh time is likely to be greater for ADV than for a routing protocol such as AODV which buffers packets
at the source node only. In particular, we expected the negative impact on TCP performance of buffering
CBR data packets to be significantly greater for ADV, putting ADV at a disadvantage with respect to AODV
and DSR. We wanted to minimize this disadvantage if possible.

There are a number of factors to consider in choosing a buffer refresh time. As mentioned above, long
buffer times for CBR data packets can have a detrimental effect on TCP performance. Furthermore, if a CBR
packet is allowed to stay in the routing-layer buffer too long, it becomes stale and is not useful even if it is
eventually delivered. On the other hand, dropping a TCP data packet too quickly may cause frequent and
unnecessary timeouts for TCP transmissions. Because the best choice of buffer refresh time might depend
on the type of packet being buffered, we decided to investigate whether any performance benefit would
accrue from having two buffering times — one for TCP packets, another for non-TCP packets. We tried two
different values for each buffer refresh time: 30 seconds (long buffer time) and 1 second (short buffer time).

The results presented in this section were obtained using the simulation environment described in Section
4.2.1. Figures 4.24 and 4.25 present the TCP connect times and throughputs observed for 5 and 10 TCP

connections with 100 Kbps of background traffic from 10 CBR sources. We also considered the case of

88

5 TCP Connections 10 TCP Connections

e "l o 9
o5 oS S5 S5
<5 e o N

100.0 100.0
e Reno — RENO
Reno-F Reno-F

I I I 0.1
o
&

o e 3
o & &
S ~ S

N

3

o
I
o
o

g

=)
I
)

TCP Connect Time (sec) [log scale]
TCP Connect Time (sec) [log scale]

0.1

Figure 4.24: Connect time for ADV for 5 and 10 TCP connections with a 100 Kbps background load from
10 CBR sources. In the labels at the bottom of each graph, the buffer refresh times are listed in the order
TCP-time/CBR-time. For example, 30s/1s denotes a 30-second TCP refresh time and a 1-second CBR
refresh time.

5 and 10 TCP connections with 200 Kbps of background traffic from 10 CBR sources. These additional
observations are presented in Appendix B.

TCP connect times were observed to be generally shorter with the longer TCP-packet buffer refresh
time of 30 seconds, especially when TCP Reno was used. If a route cannot be established before a packet
is dropped from the sender’s buffer, a TCP timeout will necessarily occur. Keeping packets buffered for
a longer period of time avoids these unnecessary timeouts, and the benefit is greatest in the case of TCP
Reno’s exponentially increasing timeout intervals.

Buffering TCP packets long enough to avoid unnecessary timeouts can also be beneficial for TCP
throughput. For TCP Reno, the use of a 30-second TCP-packet buffer refresh time resulted in through-
put gains of up to 8% relative to the 1-second case. The longer refresh time appeared to have the opposite
effect for Reno-F, as throughputs were somewhat higher with a 1-second buffer refresh time for TCP packets.
However, these increases were 4% or less, indicating that Reno-F throughput is not significantly impacted
by the choice of buffer refresh time for TCP packets.

TCP connect times were not significantly affected by the choice of buffer refresh time for CBR packets.
TCP throughput, however, was observed to be 8-12% higher with a 1-second CBR-packet buffer time,
regardless of the choice of TCP-packet buffer time. When CBR packets do not take up as much buffer space

at the source and intermediate nodes, the flow of TCP traffic is improved.

89

5 TCP Connections 10 TCP Connections

1.5 15

Reno Reno
Reno-F Reno-F

bj

Iy

o
Iy
)

o
o
o
o

TCP Throughput (Mbps)

TCP Throughput (Mbps)

Figure 4.25: Throughput for ADV for 5 and 10 TCP connections with a 100 Kbps background load from 10
CBR sources.

5 TCP Connections 10 TCP Connections

15 1.5

Reno Reno
Reno-F Reno-F

g
o
g
o
T

o
«
o
@

CBR Packet Latency (sec)
CBR Packet Latency (sec)

0.0 0.0

Figure 4.26: CBR packet latency for ADV for 5 and 10 TCP connections with a 100 Kbps background load
from 10 CBR sources.

Figures 4.26 and 4.27 present the CBR packet latencies and delivery fractions observed for 5 and 10
TCP connections with 100 Kbps of background CBR traffic. When packets are buffered for longer periods
of time, the older packets compete for available bandwidth with more recently transmitted packets. As a
result, the average latency of successfully delivered CBR packets can be expected to be larger. With the use
of the short 1-second buffer refresh time for CBR packets, we observed decreases in average packet latency
as high as 31% compared to the 30-second case. Average packet latencies dropped as much as 18% for TCP
Reno with the use of a 1-second TCP-packet refresh. With a longer refresh time, the larger number of TCP
packets buffered at intermediate nodes adds to the average packet delay for CBR traffic. This effect was

much less pronounced with Reno-F, at most a drop of 8%.

90

5 TCP Connections 10 TCP Connections

100.0 100.0

Il Reno Il Reno
0.0 |

Reno-F Reno-F
© ©»
S

| | 0.0 | I I
o o o
e\'bQ 2 \f’\» o 2
N > gQ Y >

"l o
o5 & &
,,)Q

@

<]

=)
@
o
<)

@

=}

S}
@
=}
S)

IS
o
S}

IS
(=]
o

CBR Packet Delivery Fraction (%)

CBR Packet Delivery Fraction (%)

N

o

S}
N
=}
S}

&

Figure 4.27: CBR packet delivery fraction for ADV for 5 and 10 TCP connections with a 100 Kbps back-
ground load from 10 CBR sources.

Since shorter buffer refresh times result in more packet drops, the choice of a 1-second CBR-packet
buffer refresh time lowered the packet delivery fraction by as much as 8-10%. Due to shorter queue lengths
at intermediate nodes, a shorter TCP-packet refresh time results in a higher delivery fraction for ADV
because fewer CBR packets have to be dropped due to staleness caused by late delivery.

Based on the results of this section, we conclude that the best combination of ADV buffer refresh times
is 30 seconds for TCP packets and 1 second for all other data packets. The longer TCP-packet buffer time
yields shorter connect times and higher TCP throughput, particularly when the TCP Reno protocol is used.
At the same time, the shorter buffer time for non-TCP packets results in reduced packet latency and increased

TCP throughput.

4.6 Concluding remarks

We began this chapter by categorizing techniques for improving TCP performance in MANETs. We iden-
tified three levels at which one might attack the problem, and at each level we gave examples of potential
methods for improving TCP performance. The highest level, level 1, is the class of techniques that are
purely end-to-end at the transport layer. Such methods do not require information from or interaction with
the routing layer or lower layers in the protocol stack, either at the connection endpoints or at intermediate

nodes. Level 1 techniques have the advantage of being less complex and therefore easier to implement,

91

requiring fewer modifications of existing network software. If adequate performance gains can be obtained
with level 1 techniques, they are preferable.

We have considered several level 1 techniques for improving TCP performance in MANETS. Of these,
our proposed TCP sender-side heuristic, the fixed-RTO technique, shows the most promise. We have com-
bined fixed RTO with TCP’s selective acknowledgements and delayed acknowledgements options to form
the TCP Reno-F protocol. Reno-F works well in a variety of situations; for example, TCP performance
benefits accrue with or without the presence of background network traffic. In the remainder of this section,
we identify three main cases in which we have observed Reno-F to be helpful.

Reno-F works well with routing protocols having route discovery mechanisms that can be stimulated by
an increased rate of packet transmissions, e.g. on-demand algorithms. Route stimulation can be useful in
situations where route failures are frequent, or where route repairs are difficult, say due to a sudden, large
increase in the number of hops between the TCP sender and receiver.

We have shown in Section 4.5 that, for ADV, the improvements in performance yielded by Reno-F are
generally greater when TCP-packet buffering times are short. Short buffer times can increase the rate at
which TCP packets are dropped, leading to more frequent TCP retransmit timeouts. Reno-F mitigates the
negative performance effect of these timeouts.

Reno-F tends to minimize the TCP performance differences among different MANET routing protocols,
although it does not entirely eliminate these differences. In some cases, Reno-F can offset performance
problems due to algorithmic shortcomings in a routing protocol. For example, an interesting effect of Reno-
F is that it largely negates DSR’s well-known problem with stale routes. It should be noted, however, that
even when the stale route problem is alleviated by turning off route replies from cache, Reno-F is still able

to substantially improve the TCP performance of DSR.

Chapter 5

An Adaptive Datagram Protocol for Mobile
Ad Hoc Networks

While TCP may be the most widely used transport protocol, the User Datagram Protocol (UDP) also carries a
sizeable amount of Internet traffic. For example, UDP is used in conjunction with the Real-Time Transport
Protocol (RTP) [62] to carry streaming video flows. This fact suggests that UDP performance should be
expected to have a significant impact on the overall performance that can be achieved in mobile ad hoc
networks. Therefore, we examined the UDP performance of currently proposed MANET routing protocols
with a view to improving that performance.

Our results in Chapter 3 and in several previous studies [12, 13, 20, 43] have shown that constant-bit-
rate UDP flows reach saturation in the range of 200 to 300 Kbps of combined throughput. However, we saw
in Chapter 4 that a comparable number of TCP connections can attain an aggregate throughput of close to
1 Mbps, even in the presence of competing UDP traffic. This performance advantage for TCP over UDP
contradicts the results typically seen for wireline networks.

Table 5.1 shows the results of additional simulations with identical settings (packet size, connection
endpoints) for TCP and CBR flows. The sending rate for the CBR sources was chosen to match the low-
est observed TCP throughput, approximately 1.07 Mbps. These simulations demonstrate that TCP indeed
achieves higher throughput than UDP.

Utilizing our average-case mobility scenario from the analysis of TCP Reno-F in Section 4.3, we com-

pared the throughput observed for a TCP Reno-F connection with the throughput attained by a CBR flow

92

93

Table 5.1: Transport-layer throughput in Mbps for 10 connections with no background traffic.

| Transport Protocol | ADV | AODV |

TCP Reno 1.1874 | 1.0784
TCP Reno-F 1.2746 | 1.2178
UDP 0.3865 | 0.4337

15 , ; ; ;
15 + 4 R

—— Available capacity . .
—— Available capacity
. ‘ Reno-F throughput \ UDP throughput

——- CBR send rate

-
[

| ﬂwwﬂw.v . I ‘ww (\

0 200 400 600 800 1000 0 200 400 600 800 1000
Simulation Time (sec) Simulation Time (sec)

Throughput (Mbps)

Throughput (Mbps)

o
13
——
T —

=

Figure 5.1: Throughput compared to capacity for a TCP Reno-F connection and a 1.46 Mbps CBR flow with
AODV and no background traffic load. TCP throughput = 0.361 Mbps, UDP throughput = 0.361 Mbps, UDP
delivery fraction = 25%.

with a sending rate equal to 1.46 Mbps, the maximum expected TCP throughput for a 1-hop connection as
given in Table 1.1 in Chapter 1. The AODV routing protocol was used and there was no background traffic.
Figure 5.1 shows how Reno-F is able to adapt its sending rate and efficiently utilize the available capacity.
With the very high sending rate, the CBR flow is able to achieve an equally high throughput. However,
because there is insufficient bandwidth to accommodate such a high packet rate, the majority of the CBR
packets are dropped in the network and the packet delivery fraction is only 25%. The dropped packets con-
sume network resources (bandwidth and buffer space) that could have been used for other traffic had it been
present. In Figure 5.2, we compare the throughput of a 300 Kbps CBR flow and a 500 Kbps CBR flow to
the available capacity for the same mobility scenario. Because the two CBR flows have much lower sending
rates, the delivery fractions are higher. Nevertheless, UDP’s non-adaptivity limits the throughput that can be

attained.

94

15 T T T T 15

—— Available capacity — Available capacity
UDP throughput UDP throughput
——- CBR send rate ——- CBR send rate

-
.

Throughput (Mbps)

Throughput (Mbps)

o
2l

] A 117

a4
v

Figure 5.2: Throughput compared to capacity for a 300 Kbps CBR flow and a 500 Kbps CBR flow with
AODV and no background traffic load. For the 300 Kbps flow, throughput = 0.232 Mbps, delivery fraction
= 77%. For the 500 Kbps flow, throughput = 0.305 Mbps, delivery fraction = 61%.

Based on the observation that TCP outperforms UDP in MANETS, we surmised that adapting the send-
ing rate to the available network bandwidth is essential for a transport-layer protocol to efficiently utilize the
capacity of a MANET. To this end, we have designed a new transport-layer protocol, called the Adaptive

Datagram Protocol, which is adaptive to network conditions.

5.1 Adaptive Datagram Protocol

Like UDP, the Adaptive Datagram Protocol (ADP) is a best-effort service that does not provide reliable
in-order packet delivery. Unlike UDP however, ADP attempts to inject packets into the network at a rate the
network can handle. This is accomplished with a simple scheme in which ADP packets are acknowledged
by the receiver and these ACKSs trigger subsequent packet transmissions. If the application rate temporarily
exceeds the available network capacity, the excess packets are buffered up to some limit set by the applica-
tion. However, if the arrival rate of data packets from the application exceeds ADP’s buffering capability,
the excess packets are simply dropped from the buffer (oldest packets first) and do not impact network
performance. A depiction of the flow of data packets and acknowledgements in ADP is given in Figure 5.3.

Given the success with which TCP is able to conform its flow to changing network capacity, we decided
to borrow from TCP’s windowing algorithm. Since we do not require reliable packet transmission, that as-

pect of TCP was not essential. In particular, there is no need for the sender to wait for the acknowledgement

95

Application Application
Source Destination
|
,,,,,,,,,,,,,,, o
: Data
1 N | Packet
Buffer | 3 E A
: . T
y w
ACK Received) ! 0 [Packet
lﬁ Tin?éout 3 R | Received
K
Discard ADP! ADP

,,,

Figure 5.3: ADP packet flow.

of a specific packet as TCP does with its retransmit timer. However, we still needed to retain a timer based
on the estimated round-trip time (RTT) to keep the sender from stalling while waiting for the arrival of an
ACK.

We derive a smoothed estimate of the RTT in the same way as TCP. A timestamp field in the ADP
packet header is used to store the time at which a packet is transmitted and this value is echoed back by the
receiver when it acknowledges delivery of the packet. When the ACK is received by the sender, the time
elapsed since the packet was transmitted is used to update the current estimate of the RTT. When a packet
is transmitted, a timer is set to expire after an interval of time computed exactly the way TCP’s retransmit
timeout interval is calculated, i.e. the transmit timeout interval equals the estimated RTT plus 4 times the
variance in the RTT. The use of the transmit timer guards against the case in which all outstanding ACKs
have been lost in the network. Each ADP packet is assigned a sequence number which is used to maintain a
log of which recently transmitted packets have been acknowledged. The ADP packet header format is given

in Table 5.2.

96

Table 5.2: Fields in an ADP packet header.

Source port (16 bits) | Destination port (16)
Length (16) | Checksum (16)
Sequence number (32)

Time stamp (32)

5.1.1 Implementing ADP
Windowing algorithm

Initially we used a simple windowing algorithm in which we keep track of the acknowledgement status of
recently transmitted packets. Our algorithm differs from the standard sliding window in that since we do not
require retransmissions to ensure reliable packet delivery, we cannot use cumulative ACKs to define the left
hand side of the window because dropped packets will never be ACKed. Instead, the left hand side points to
the oldest packet transmitted, but not yet acknowledged, since the last timeout. The right hand side points to
the most recently transmitted packet. The window includes all unacknowledged packets from the left hand
side through, and including, the right hand side. The size of the window is started at 1 and is expanded
using the additive increase algorithm from TCP. We opted not to employ a slow start phase because, based
on our experience with TCP, window sizes in MANETSs will generally not be very large. Moreover, since
ADP does not wait for specific packets to be acknowledged but will transmit a new packet on the receipt of
any ACK (subject to the constraints described below), we were concerned that the multiplicative increase of
the window size during slow start might expand the window too aggressively.

When an ACK arrives for a previously unacknowledged packet inside the window, the window size
is updated and new packets are transmitted until the number of unacknowledged packets between (and
including) the left and right hand sides of the window is equal to the updated window size. The transmit
timer is reset each time a packet is transmitted and is not associated with a particular packet. That is, we
do not wait for a particular packet to be acknowledged before canceling the transmit timer — the receipt of
any ACK is sufficient. If the timer expires before an ACK is received, a new packet is transmitted and the

right hand side of the window is reset so that it points to this packet. The left hand side of the window is

97

1 2 3 4 5 6 7 8 9

D [[

KO | ¢
LHS RHS

Window Size=3
1 2 3 4 5 6 7 8

D]

b \
LHS RHS .
Ti meout

Window Size=3

1 2 3 45 6 7 8 9

SLERENAaRE

Packet transmitted
X Packet acknowledged

LHS=RHS

Window Size=1

Figure 5.4: ADP congestion window.

advanced so that it also points to the newly sent packet, which returns the window to its starting size of 1.
As an optimization, the previous value of the left hand side is remembered so that ACKs which would have
fallen in the previous window will still be counted in case they are not really lost but simply delayed. The

basic operation of the ADP congestion window is illustrated in Figure 5.4.

ACK-clocking

We also considered the use of a simple ACK-clocking mechanism in which the arrival of each ACK triggers
the next packet transmission. There is no window to maintain, so it is not necessary to track the acknowl-
edgement of individual packets. The transmit timer is still required to keep ADP from stalling in case the
flow of ACKs is interrupted. It may appear that using any ACK to trigger the sending of a new packet might
cause too high an injection rate if the network duplicates packets frequently. However, we have observed a
very low rate of packet duplication in our simulations and we do not consider this to be a problem.

Because there is no retransmission of previous packets as in TCP, the fact that there is no window in this
scheme does not preclude the possibility of having multiple, distinct packets in flight simultaneously. This
is possible because when the transmit timer expires before a tardy ACK arrives, a packet will be injected

into the network in addition to the packet that will be sent when the late ACK is received.

98

Table 5.3: Performance for 1 connection with TCP-like windowing algorithm and a 100 Kbps background
load from 10 CBR sources.

| Performance Metric | ADV [AODV |
Throughput (Mbps) 0.3054 | 0.2905
Delivery fraction (%) 86.40 | 84.07
Network latency (sec) 0.3997 | 0.2408

Table 5.4: Performance for 1 connection with simple ACK-clocking and a 100 Kbps background load from
10 CBR sources.

| Performance Metric | ADV [AODV |
Throughput (Mbps) 0.3146 | 0.3103
Delivery fraction (%) 99.38 | 99.24
Network latency (sec) 0.0560 | 0.0334

Windowing vs. ACK-clocking

We compared the performance attained with the ACK-clocking mechanism to that obtained using the win-
dowing algorithm. Packet buffering was not modeled in this simulation, and an infinite backlog of packets
ready to be sent was assumed. Since queuing delay was undefined, packet latency consisted only of the
network transmission delay. Although packet sequence numbers are not required for the ACK-clocking
scheme, the sequence number field was retained in the packet header. The results are shown in Tables 5.3
and 5.4.

The packet delivery fractions obtained with the windowing method were lower than those observed with
ACK-clocking. This is due to the fact that the additive-increase algorithm for adjusting the window size
is designed to induce packet drops in an effort to continually probe the network for additional bandwidth.
Packet latencies were observed to be higher for the windowing method. Because the windowing algorithm
attempts to maximize the number of packets in flight, an in-flight packet will frequently have to sit in a
routing layer buffer awaiting transmission. In the ACK-clocking scheme, packets are less likely to incur this
delay.

In terms of throughput, the ACK-clocking scheme yielded comparable performance to the windowing

algorithm and, being simpler, was adopted for our further work.

99

Table 5.5: Effect of fixing the transmit timeout interval on throughput (Mbps). For 1 video connection with
a 100 Kbps background from 10 CBR sources.

| Protocol | Fixed | Not fixed |
ADV, 5 s frame buffer 0.1182 | 0.1054
ADV, unlimited frame buffer 0.1456 | 0.1386
AODV, 5 s frame buffer 0.1366 | 0.1315
AODV, unlimited frame buffer 0.1449 | 0.1453

Table 5.6: Effect of fixing the transmit timeout interval on frame delivery fraction (%). For 1 video connec-
tion with a 100 Kbps background from 10 CBR sources.

| Protocol | Fixed | Not fixed |
ADV, 5 s frame buffer 80.25 | 71.56
ADV, unlimited frame buffer 98.53 | 93.02
AQODV, 5 s frame buffer 93.23 | 89.78
AODV, unlimited frame buffer 99.09 | 99.04

5.1.2 Fixed transmit timeout interval

In the TCP Reno congestion control scheme, each time a retransmit timeout occurs, the retransmit timeout
interval (RTO) is doubled. The exponential backoff of the RTO continues until either an ACK is received
for the retransmitted packet or a maximum number of backoffs have occurred. We followed this practice in
our initial design, doubling ADP’s transmit timeout interval on consecutive timeouts. This scheme was in
use for the comparison of windowing and ACK-clocking above. However, as we saw in Chapter 4, fixing
the RTO on consecutive timeouts rather than continuing to double it, can yield gains in TCP performance.
So, we explored the possibility that a similar design choice with respect to ADP’s transmit timeout interval
(TTO) might also result in performance benefits.

We measured the performance of a single video connection using ADP with and without fixing the
transmit timeout interval on consecutive timeouts. The results shown in Tables 5.5 and 5.6 were obtained
using the experimental setup described in Section 5.2. A background traffic load of 100 Kbps from 10
CBR sources was included. The fixed-TTO version of ADP yielded improved performance when the ADV
routing protocol was used, while the gains observed for AODV were modest at best. Since fixing the TTO

appears to only help, not hurt, performance, we elected to employ this technique in the ADP design.

100
5.2 ADP performance analysis

We envision the transport of multimedia traffic, e.g. streaming video, as a potential application of ADP in
MANETSs. Therefore, in our analysis of ADP performance, we utilized variable-bit-rate (VBR) traffic in
order to more realistically simulate a multimedia flow. To facilitate comparisons with the TCP performance

results of Chapter 4, we included background CBR traffic in all ADP simulations.

5.2.1 Experimental methods

The simulation environment was as described in Section 3.4.1. We simulated a network of 50 nodes moving
in a 1000m x 1000m square field. A background UDP traffic load of 100 Kbps was generated by 10 CBR
connections, and the CBR packet sizes were fixed at 512 bytes. After a warm-up time of 100 seconds, one or
more simulated video connections were established over each of which VBR traffic flowed for 900 seconds.
Performance results were averaged over 10 different mobility scenarios. Based on the results of Section 4.5,
we set ADV’s UDP-packet buffer refresh time to 1 second. A buffer refresh time of 30 seconds was used for

AODV.

5.2.2 Simulation of video traffic

For the foreground traffic, we simulated streaming video using the flow characteristics given for a model of
MPEG-coded video traffic [41]. In this model, the compressed video stream consists of frames of three types
(Intra-frame, Predictive, and Bidirectional) which occur in the repeated pattern I-B-B-P-B-B-P-B-B-P-B-B-
P-B-B-I-... as depicted in Figure 5.5. The sizes of each of these frame types are assumed to be lognormally
distributed. For this study, we scaled back the frame-size distribution parameters to give a bit rate that can
be handled by a network with 2 Mbps wireless links. Our simulated traffic consisted of 15 packets a second
with an overall mean packet size of approximately 1210 bytes. The frame-size distribution parameters we

used are shown in Table 5.7.

101

B B PBBPOBBPBBP BB

ﬂ%{% 1y

Compron Pattern (length = 15 frames) %

Figure 5.5: Video frame pattern.

Table 5.7: Frame-size distributions for simulated video stream.

\ Distribution Parameter \ All Frames \ I Frames \ P Frames \ B Frames \

Mean (bytes) 1211.1 5900.9 1605.8 584.2
Standard deviation (bytes) 309.7 1201.8 1048.9 159.1

5.2.3 Performance results

One of the configurable parameters for ADP is the length of the buffer used to hold video frames. Initially,
we used a 75-frame buffer, sufficient to hold 5 seconds of our simulated video traffic. In addition, we varied
the number of video flows: 1, 2, 5, and 10. Figure 5.6 presents the frame delivery fraction (which takes
into account buffer and network losses) and throughput for ADV and AODV. For comparison, we also show
the frame delivery fraction and throughput achieved by standard UDP. Compared to UDP, ADP improves
the delivery fraction of one video flow marginally at best. However, as the number of video flows increases
to 2, 5, and 10, ADP provides significantly higher performance than UDP; frame delivery fractions were
higher by 40-60%. With ADP, most of the frame losses occur due to buffer overflow, and very few frames,
about 1.5%, are lost by the network. So, with unlimited buffer lengths, the frame loss will be about 1.5%;
however, the buffer lengths will increase continuously for 5 or more video flows because the application
generates more packets than the network can handle.

Now let us examine the throughput graph. For an upper bound, we also indicate throughputs achieved

102

100 T T T T 1

° &—e ADV - UDP

MY e—e ADV - UDP A--AAODV - UDP

% --x AODV - UDP ADV - ADP 5s
*—% ADV - ADP 5s B AODV - ADP 5s
&--<A0DV - ADP 5s *$——kADV - ADP Unl
&--<A0DV - ADP Unl

o
©

80 -

o
o

60 -

o
~

40+

Delivery Fraction (%)
Throughput (Mbps)

20 1 0.2 -

Number of Connections Number of Connections

Figure 5.6: Frame delivery fraction and throughput for UDP and ADP with a varying number of video flows
and a 100 Kbps background load from 10 CBR sources.

by ADP with infinite frame buffers. ADP gives marginal improvement in throughput for one video flow
for both limited and unlimited buffer lengths. However, as the number of flows increases, ADP provides
substantially higher throughput. With a 75-frame buffer, ADP achieves 20% more throughput for 5 video
flows and 40-60% more throughput for 10 video flows. For two video flows, however, ADP gives about the
same throughput as UDP. The primary reason for higher performance by ADP with 5 and 10 video flows
is that the network is congested with UDP but not with ADP. With unlimited frame buffers, ADP yields
increases in throughput ranging from 50% for 2 video flows to 200% for 10 flows. Finally, it is noteworthy
that AODV performs marginally better for 1 or 2 video flows and ADV performs significantly better with 10
flows.

In Figure 5.7, we compare the throughput obtained by ADP connections with unlimited buffering with
the throughput obtained by the same number of FTP connections. The FTP throughput numbers were taken
from the performance analysis in Chapter 4. For 1 or 2 connections, ADP is underperforming FTP because
the rate at which ADP packets can be generated is limited by the application’s sending rate, while FTP has
an “infinite” backlog of packets ready to send. As the number of connections increases, the throughputs of
both ADP and FTP are limited by the capacity of the network. In that case, ADP is doing as well or better
than FTP at utilizing the available network bandwidth.

To analyze the performance of ADP further, we conducted several simulations varying ADP frame buffer

size. Figures 5.8-5.13 indicate the details of frame losses and video throughputs achieved. For one video

103

ADV - FTP
AODV - FTP !
*— ADV - ADP Unl m
0.8 - 3--E1AODV - ADP Unl -7

0.6 -

04

Throughput (Mbps)

02

Number of Connections

Figure 5.7: Throughput for FTP over TCP Reno-F and video over ADP with unlimited buffering with a
varying number of connections and a 100 Kbps background load from 10 CBR sources.

ADV AODV
e Dropped in network e Dropped in network
Dropped from buffer Dropped from buffer
Delivered Delivered
ADP Unl ADP Unl
ADP 30s ADP 30s
ADP 25s ADP 25s
ADP 20s ADP 20s
ADP 15s ADP 15s
ADP 10s ADP 10s
ADP 5s ADP 5s
uDP - uDP q
0 26 4‘0 éO 8‘() 100 0 2‘0 4‘0 66 86 100

Fraction of Generated Frames (%) Fraction of Generated Frames (%)

Figure 5.8: Frame delivery and network drop rates for 1 video connection with ADV and AODV.

flow, AODV performs very well; even with a 5-second frame buffer, the frame delivery fraction is around
93%. As the number of video flows increase, ADV performs better than AODV. For 5 and 10 video flows,
the frame delivery fraction is rather low. For these cases, the video traffic demands more bandwidth than the
network can provide. With UDP, this traffic will congest the network and will interfere with other traffic.
In comparison, ADP offers the following benefits: (a) throughput is improved significantly, and (b) most of
the excess load is dropped by the source when the frame buffer overflows, which avoids wasting network

resources on the traffic that is likely to be undeliverable.

104

ADV AODV
e Dropped in network e Dropped in network
s Dropped from buffer s Dropped from buffer
Delivered Delivered
ADP Unl ADP Unl
ADP 30s ADP 30s
ADP 25s ADP 25s
ADP 20s ADP 20s
ADP 15s ADP 15s
ADP 10s ADP 10s
ADP 5s ADP 5s
uUDP ubp
[26 4‘0 éO 8‘0 100 0 2‘0 4‘0 66 80 100
Fraction of Generated Frames (%) Fraction of Generated Frames (%)

Figure 5.9: Frame delivery and network drop rates for 2 video connections with ADV and AODV.

1 Video Connection 2 Video Connections

0.2 0.4

ADV
AODV

ADV
AODV

Throughput (Mbps)
o o
N w

Throughput (Mbps)

o
a

Figure 5.10: Throughput for 1 and 2 video connections with a 100 Kbps background load from 10 CBR
sources.

ADV AODV
e Dropped in network == Dropped in network
s Dropped from buffer s Dropped from buffer
Delivered Delivered
ADP Unl ADP Unl
ADP 30s ADP 30s
ADP 25s ADP 25s
ADP 20s ADP 20s
ADP 15s ADP 15s
ADP 10s ADP 10s
ADP 5s ADP 5s
uUDP ubp
[26 4‘0 éO 8‘0 100 0 2‘0 4‘0 66 Sb 100
Fraction of Generated Frames (%) Fraction of Generated Frames (%)

Figure 5.11: Frame delivery and network drop rates for 5 video connections with ADV and AODV.

ADP Unl
ADP 30s
ADP 25s
ADP 20s
ADP 15s
ADP 10s

ADP 5s

UDP

ADV

= Dropped in network
=== Dropped from buffer
Delivered

. . . .
20 40 60 80 100
Fraction of Generated Frames (%)

ADP Unl
ADP 30s
ADP 25s
ADP 20s
ADP 15s
ADP 10s

ADP 5s

UDP

105

AODV

= Dropped in network
=== Dropped from buffer
Delivered

. . . .
20 40 60 80 100
Fraction of Generated Frames (%)

Figure 5.12: Frame delivery and network drop rates for 10 video connections with ADV and AODV.

0.8

Throughput (Mbps)
o o
B o

o
N

5 Video Connections

ADV
AODV

0.8

o©
o

o
'S

Throughput (Mbps)

0.2

10 Video Connections

Figure 5.13: Throughput for 5 and 10 video connections with a 100 Kbps background load from 10 CBR
sources.

106

5.2.4 Network resource usage

One interesting observation is that with ADP very few packets are dropped by the network. There are two
reasons for this: (a) ADP tries to inject packets into the network at a rate which conforms to the available
bandwidth, and (b) ADP tends to send more packets when the distance between sender and receiver is short
and fewer packets when the distance is long.

Figure 5.14 shows the throughput, in video frames per second, that we observed for 10 video connections
in one of the mobility scenarios from the performance analysis presented in this chapter. In this example, the
routing protocol was AODV and a 10-CBR 100 Kbps background load was included. Various performance
and MAC-layer statistics are presented for the same simulation run in Table 5.8. The number of packets
delivered and throughput are about 50% higher for ADP than UDP. Note that the packets successfully
delivered by UDP took more hops between sender and receiver on average than did the packets delivered by
ADP.

When we account for the network resources used by dropped packets, the advantage for ADP is even
greater. For UDP, there were about 5.6 MBytes transmitted at the MAC layer for every MByte of data
delivered. This figure includes the hops taken by packets that were dropped. For ADP, the ratio, which
includes the ACK packets, is much smaller at 2.6. If we consider packets rather than bytes, the numbers still
favor ADP. There were 4.3 packets transmitted at the MAC layer for every data packet delivered by ADP,

while the ratio for UDP was higher at 5.1. ADP is clearly a much more efficient datagram protocol.

5.3 Concluding remarks

We believe that it is fundamentally important that a transport protocol be adaptive to network conditions in
an environment as potentially dynamic as a mobile ad hoc network. While the approach adopted by some
applications of using an aggressive UDP flow to “blast” packets across the Internet may be workable in the
world of fixed, wireline networks, such tactics will not be viable when changes in the network topology and

available capacity are rapid. We have shown in this chapter that it is possible to design an adaptive unreliable

100

80 -

60

40

Throughput (frames/sec)

20

— UDP

=

ADP |

[¢]
100 300 500

700

Simulation Time (sec)

900

107

Figure 5.14: Throughput of 10 video connections using ADP and UDP. AODV routing protocol, 10-CBR
100 Kbps background load.

Table 5.8: Performance and MAC-layer statistics for 10 video connections. AODV routing protocol, 10-
CBR 100 Kbps background load.

| Performance Metric UDP ADP
Throughput (Mbps) 0.3347 0.4992
Packets Delivered 34,901 51,567
Hops Per Delivered Packet 2.40 2.11

Data Packets Transmitted at the MAC
Layer (per Delivered Packet)

176,415 (5.1)

115,712 (2.2)

ADP ACKs Transmitted at the MAC
Layer

0

106,818

Packets Transmitted at the MAC Layer
(per Delivered Packet)

176,415 (5.1)

222,530 (4.3)

MBytes of Data Delivered

39.90

59.51

MBytes Transmitted at the MAC Layer
(per Delivered MByte of Data)

222.23 (5.6)

153.09 (2.6)

108

packet delivery service that achieves high throughputs while being much more efficient than UDP in terms
of network resource usage.

The Real-Time Transport Protocol [62] has been designed to use an unreliable datagram service like
UDP to move delay-sensitive data while providing the application with the feedback required to adjust its
sending rate to match the available network bandwidth. We believe that ADP is a viable substitute for UDP
as the underlying transport protocol. Based on the feedback it receives from RTP, an application will be
able to choose a combination of sending rate and ADP buffer size that gives a superior level of performance
while staying within the application’s timing constraints.

In designing ADP, we started with the premise that we needed a congestion control mechanism akin to
the one used by TCP. This type of mechanism may be intuitive and is certainly nothing new. However, our
insight was that the full complexity of a TCP-like windowing system is not necessary to achieve excellent
results. We have shown that a simple ACK-clocking method is sufficient to enable an ADP flow to very
efficiently utilize the available network capacity.

A potential criticism of any ACK-based mechanism is that the overhead incurred by the ACK traffic will
offset the gains in performance afforded by the mechanism. In this regard, certain design changes could
be made to ADP that would likely serve to reduce the number of ACKs without a negative impact on ADP
performance. One promising idea that we have not yet investigated is the use of a delayed acknowledgement
scheme similar to TCP’s delayed ACKSs. An 8-bit vector could be added to the ADP packet header in which
the receiver gives the status of the 8 packets prior to the packet being acknowledged. In addition to enabling
a delayed ACK to serve as acknowledgement of multiple data packets, the “previous-ACK” vector provides

redundancy in the event acknowledgements are dropped by the network.

Chapter 6

Multimedia Traffi cin Mobile Ad hoc
Networks

The bandwidth available to early implementations of mobile ad hoc networks has been limited. For example,
the IEEE 802.11 standard provides link capacities of just 1-2 Mbps. This limited bandwidth is not adequate
to support many applications which are typical of the wired Internet. However, newer standards like IEEE
802.11a are specifying bandwidths as high as 55 Mbps, and future technologies will provide even more
capacity. This higher capacity will make it feasible for MANETS to carry the traffic from bandwidth-
intensive sources such as multimedia applications.

In Chapter 4, we confined our performance analyses to TCP flows from simulated FTP file transfers.
When we analyzed the performance of ADP in Chapter 5, we introduced simulated streaming video in
order to make the simulated traffic a bit more realistic. In this chapter, we extend our investigation of TCP
performance, and Reno-F in particular, to encompass Web traffic. We then combine the simulated Web and
video flows to create a multimedia traffic load, and we examine the performance benefits conferred by TCP

Reno-F and ADP in this setting.

6.1 Multimediatraffic

Browsing the World Wide Web is a major activity on the Internet. Web traffic is carried by the Hyper-Text
Transfer Protocol (HTTP) which runs on top of TCP. This traffic is characterized by highly variable bit rates

and short-lived connections compared to other types of TCP traffic such as FTP file transfers.

109

110

Think Time (sec)
Median 6.01
Range 1.18 — 14.86

| A 4
! Request (bytes)

Median 241
Range 129 — 1373

,,

Number Size (bytes)
| Median 2 2327 !
| Range 1 — 63 63 — 1636039 !

Figure 6.1: Client-server request-reply cycle in a simulated Web session.

Variable bit rates are also a characteristic of streaming video traffic. In this case, video frames are
usually injected into the network at a constant rate but the size of these frames can vary dramatically. In
Section 5.2.2, we discussed how we have simulated video traffic. In the following section, we consider the

simulation of Web traffic.

6.1.1 Simulation of Web traffic

We utilized an HTTP traffic generator [28] to simulate the flow of information between browsers and servers
during Web sessions. As depicted in Figure 6.1, each session consists of an alternating sequence of think
and HTTP transaction modes. In the think mode, the client thinks for a random period of time and does
not generate any network traffic. In an HTTP transaction, the client issues a request, and the server then
responds with a random number of replies of variable length. For each transaction, the think time, the
size of the request, the number of replies, and the lengths of the replies were drawn from the distributions
supplied with the traffic generator. However, to keep the Web sessions short enough so that the majority
of the client-server exchanges could be completed within the duration of the simulation, we truncated the
think time distribution at 15 seconds. To make the simulations repeatable, we generated the Web sessions in

advance and stored them in files which were used as inputs to the simulator.

111
6.2 Performanceanalysis

In this section, we present the results of our performance analysis. After describing our experimental setup,
we compare the performance of ADV and AODV, with TCP Reno and Reno-F, for a TCP traffic load gener-
ated by simulated Web browser sessions. We then extend the performance comparison to include a mixture
of the HTTP traffic generated by the Web sessions and multiple simulated video flows carried by UDP and

by our proposed Adaptive Datagram Protocol.

6.2.1 Experimental methods

The simulation environment was as described in Section 3.4.1. We simulated a network of 50 nodes moving
in a 1000m x 1000m square field. A background UDP traffic load of 100 Kbps was generated by 10 CBR
connections, and the CBR packet sizes were fixed at 512 bytes. After a warm-up time of 100 seconds,
simulated multimedia (HTTP or video) connections were established and performance data were collected
for up to 200 seconds. The performance results were averaged over 50 different mobility scenarios. Based
on the results of Section 4.5, we set ADV’s buffer refresh time to 1 second for UDP packets and 30 seconds
for TCP packets. A buffer refresh time of 30 seconds was used for AODV.

Using the HTTP traffic generator, we simulated 10 Web sessions in which browsers on 10 different mo-
bile nodes issue requests and receive replies from Web servers running on 3 other nodes. In each simulation
run, we measured service time, response time, and throughput for the HTTP connections. Service time is the
time spent in the request-reply phase of a Web session, i.e. the client’s think time is not included. If a Web
session is not completed prior to the end of a simulation run, the service time for that session is the sum of
the time spent in all completed request-reply cycles and any time spent in a request-reply cycle that is still
in progress at the end of the simulation. Thus, for an unfinished session, the service time is equal to 200
seconds less the time spent by the client in think mode. For a finished session, the service time is the total
time taken to complete the session less the think time. The mean service time is a simple arithmetic mean
of the service times for the 10 Web sessions.

Response time is the interval between the sending of a client request and the receipt of the first packet

112

200 1
B Reno B Reno
Reno-F Reno-F
0.8
150 -
g 506
= 2
g 100 E
2]
? £ o04r
3
s £
50
02 -
0 0
ADV AODV ADV AODV

Figure 6.2: Mean service time and throughput for 10 HTTP connections with no CBR background traffic.

200 1

B Reno B Reno

Reno-F Reno-F

=

a

S
o
©

Mean Service Time (sec)
[
o
o
T
HTTP Throughput (Mbps)

o
=]
T

4
o

o
~

o
N}

0 0
ADV AODV ADV AODV

Figure 6.3: Mean service time and throughput for 10 HTTP connections with a 100 Kbps background load
from 10 CBR sources.

of the server’s reply. The average response time is the arithmetic mean of the response times for all request-
reply cycles in the 10 Web sessions. HTTP throughput is computed as the total number of TCP bytes
delivered for all 10 Web sessions, including the bytes delivered in any request-reply cycles that are still in
progress at the end of the simulation, divided by the sum of the session service times. In the simulations

which include ADP (UDP) traffic, we measured the throughput for the ADP (UDP) connections.

6.2.2 Performance results for HTTP traffic only

We began by evaluating the performance of the AODV and ADV routing protocols for HTTP traffic without
any background network load from CBR traffic. As shown in Figure 6.2, AODV’s HTTP performance

improved with the use of Reno-F. The average time taken to complete a client-server session was reduced

113

by 9% while HTTP throughput was 23% higher. Reno-F yielded only modest performance gains for ADV,
however. This observation is consistent with the results of Chapter 4 where it was shown that, due to its
proactive routing algorithm, ADV derives little benefit from the route stimulation of Reno-F.

Next, we added a 100 Kbps background load from 10 CBR sources to the simulations. The observed
mean service time and HTTP throughput for the two routing protocols are shown in Figure 6.3. For AODV,
the addition of the CBR traffic has a considerable impact on HTTP performance, reducing TCP Reno
throughput by 23% and increasing the mean service time by 13%. As in the no-background case, Reno-F
had a beneficial effect on the performance of AODV. Mean service time was reduced by 4% and throughput
increased by 13%. Once again, Reno-F yielded only a modest improvement in ADV’s performance.

Comparing AODV and ADV, we find that with interfering CBR traffic, ADV outperforms AODV by
a wide margin. With TCP Reno, HTTP throughput was 66% higher and service times were 21% lower
for ADV. With Reno-F, ADV still outperformed AODV by 54% in terms of throughput. As we have seen
in Chapter 4, AODV’s performance falls off with the higher level of routing activity needed to maintain a
greater number of connections. ADV, due to its proactive approach to routing, is able to handle the additional
CBR connections without incurring a performance penalty.

Figures 6.4 and 6.5 show the service and response times observed for each of the 10 client-server pairs.
There is no evidence that some worst-case Web session is skewing the results and making the AODV per-
formance results look worse. ADV maintained its advantage in service times in every case. As in the case of
service times and HTTP throughput, Reno-F lessened the differences in response times for the two routing
protocols. ADV yielded shorter response times for every client-server pair, although with Reno-F, its advan-
tage over AODV was smaller. The response time includes the time taken to establish the connection from
client to server over which the client’s request will be relayed, and the time taken to create a connection in
the opposite direction to carry the server’s reply back to the client. Thus, the response time is a good indi-
cator of how quickly a routing protocol is able to discover routes between the client and server nodes in an
environment with numerous short-lived TCP connections. It is noteworthy that ADV’s proactive approach

outperforms AODV’s route discovery mechanism in this setting.

TCP Reno

200

Mean Service Time (sec)
P P
o a1
o o
T
.

a
o

1 2 3 4 5 6 7 8 9 10
Client-Server Pair

Mean Service Time (sec)

114

TCP Reno-F

200

i
a
=]

[N
o
<]

a
o
T

ADV
AODV

2 3 4 5 6 7 8 9 10
Client-Server Pair

Figure 6.4: Service times for 10 HTTP server-client connections using TCP Reno and TCP Reno-F with a

100 Kbps background load from 10 CBR sources.

TCP Reno

ADV
AODV

Mean Response Time (sec)

1 2 3 4 5 6 7 8 9 10
Client-Server Pair

Mean Response Time (sec)

TCP Reno-F

ADV
AODV

2 3 4 5 6 7 8 9 10
Client-Server Pair

Figure 6.5: Response times for 10 HTTP server-client connections using TCP Reno and TCP Reno-F with

a 100 Kbps background load from 10 CBR sources.

115

In Chapter 4, we observed that, for 10 FTP flows, both ADV and AODV achieved throughputs of nearly
1 Mbps with TCP Reno-F. For 10 HTTP flows, however, even the best-performing ADV obtained only
60% of the FTP throughput. To understand this disparity, consider the differences in FTP and HTTP traffic
patterns. The FTP flows were simulated with infinite backlog. Once an FTP connection was established,
packets were always ready to be sent. The HTTP flows, on the other hand, consist of a number of request-
reply cycles interleaved with periods of think time. New HTTP connections between client and server must
be established for every request-reply cycle, which means that an HTTP flow will spend a greater proportion
of time in TCP’s slow start phase than will a long-lived FTP connection. In the case of our simulated client
requests, which are only 1.4 packets in length on average, an HTTP connection will never leave the slow
start phase. During slow start, the size of the TCP sender’s congestion window is smaller and throughput is
lower compared to an established connection that is fully utilizing the bandwidth available to it. Moreover,
the rate of TCP retransmit timeouts will be higher for HTTP flows because RTOs occur frequently during
connection establishment. For example, with AODV, TCP Reno-F, and background CBR traffic, the number
of timeouts per unit of connection time was observed to be over 60% higher for HTTP flows than for FTP
flows. Retransmit timeouts cause the TCP sender to re-enter slow start and thus the higher rate of RTOs
incurred by HTTP results in lower throughput compared to FTP.

Both protocols were able to handle the background CBR load quite well. Figure 6.6 shows the packet
latency and throughput observed for the background CBR flows. The rate of packet loss was low at about
10%, and the average packet latency was in the 200-300 msec range. AODV vyielded the lowest CBR packet
latency and was not impacted by Reno-F, while for ADV, packet latency was about 12% lower with Reno-F.
In nearly every mobility scenario, not all of the Web sessions were completed within 200 seconds, and on
average, more request-reply cycles were completed with Reno-F than with Reno. When more request-reply
cycles are completed, more periods of client think time occur and total client think time is greater. Thus,
Reno-F, in general, minimized the duration for which TCP packets competed for network bandwidth. In
addition, the use of delayed acknowledgements in Reno-F resulted in a significant reduction in TCP ACK
traffic, as much as 15% for ADV. For ADV, reduced competition from TCP traffic is particularly effective

in lowering CBR packet latency because ADV buffers packets at intermediate nodes. In contrast, the low

116

05 0.15

I
~

o
s

CBR Packet Latency (sec)
o o o
o N N} w
T T T
CBR Throughput (Mbps)
o
o
o (5]

ADV AODV ADV AODV

Figure 6.6: CBR packet latency and throughput for 10 HTTP connections with a 100 Kbps background load
from 10 CBR sources.

packet latency yielded by AODV with TCP Reno leaves essentially no room for improvement. The reduced
interference from HTTP traffic with Reno-F did not impact CBR throughput for either protocol since the
network was not congested and the packet delivery rates were nearly as high as they could be even without

the competing traffic [12, 20].

6.2.3 Performance results for combined multimedia traffic

We turn our attention now to analyzing the performance of ADV and AODV for a traffic load consisting
of video flows as well as HTTP connections. In particular, we want to see how compatible our proposed
datagram protocol, ADP, is with TCP Reno and Reno-F. Whereas a non-conforming UDP flow can be
expected to steal bandwidth from a TCP connection, ADP’s adaptivity should allow ADP and TCP to more
equitably share available network capacity.

We measured the combined throughputs of various collections of UDP, ADP, and HTTP connections.
The UDP and ADP connections carry simulated video streams as described in Chapter 5. The HTTP con-
nections carry Web session traffic as described earlier in this chapter. The combinations we considered
were 10 UDP flows, 10 ADP flows with 5-second buffering, 5 HTTP connections plus 5 UDP flows, and 5
HTTP connections plus 5 ADP flows with 5-second buffering. We also included the combination of 5 HTTP

connections plus 5 ADP flows with unlimited buffering as the limiting case.

117

ADV AODV

=
-

HTTP HTTP
ubDP ubP
ADP-5s ADP-5s

ADP-UnI

o
®
o
®

ADP-UnI

o
=)
o
)

o
IS
o
IS

Combined Throughput (Mbps)
Combined Throughput (Mbps)

o
N
o
N

o
o

& PR gos NN

R K © ° %VOQ’
Q!

Q- < %
<«
o c&é

Figure 6.7: Combined throughputs for ADV and AODV for 10 connections with HTTP over TCP Reno and
no CBR background traffic.

ADV AODV

HTTP HTTP
UDP ubP
L ADP-5s] i ADP-5s

ADP-UnI ADP-UnI

-
-

o
®
o
®

o
o
o
=)

o
IS
o
'S

Combined Throughput (Mbps)
Combined Throughput (Mbps)

o
N
o
N

o
o

< o

= A
O Q7 Q A
) O A2) 4
> o« S o

Q. N
% << N
(o\e\ <g‘e\<‘

Figure 6.8: Combined throughputs for ADV and AODV for 10 connections with HTTP over TCP Reno-F
and no CBR background traffic.

The combined throughputs obtained using TCP Reno and Reno-F, with no interfering CBR traffic, are
shown in Figures 6.7 and 6.8. In Figures 6.9 and 6.10, a background load of 100 Kbps from 10 CBR
sources has been added. These graphs contain a variety of information which is the basis for the following

observations.

UDP and ADP throughput: First, we consider the UDP and ADP connections by themselves. Consistent
with the results of Chapter 5, the 10 ADP flows achieved a larger combined throughput than the 10 UDP
flows, about 50% larger in the case of ADV. As expected, both the UDP and ADP throughputs were lower

in the presence of competing CBR traffic, with the reduction in ADP throughput being the greatest due to

118

ADV AODV

=
-

HTTP HTTP
ubpP uDP
[ADP-5s i [ADP-5s

ADP-UnI

o
®
o
®

ADP-UnI

o
=)
o
)

o
IS
o
IS

Combined Throughput (Mbps)
Combined Throughput (Mbps)

o
N
o
N

o
o

& PR gos NN

R K © ° %VOQ’
Q!

Q- < %
<«
o 6;\6

Figure 6.9: Combined throughputs for ADV and AODV for 10 connections with HTTP over TCP Reno and
100 Kbps from 10 CBR sources.

ADV AODV

HTTP HTTP
UDP ubP
[ADP-5s] [ADP-5s

ADP-UnNI ADP-UNI

-
-

o
®
o
®

o
o
o
=)

o
IS
o
'S

Combined Throughput (Mbps)
Combined Throughput (Mbps)

o
N
o
N

o
o

< o

= A
O Q7 Q A
) O A2) 4
> o <& S o

Q. N
% << N
(o\e\ <g‘e\<‘

Figure 6.10: Combined throughputs for ADV and AODV for 10 connections with HTTP over TCP Reno-F
and 100 Kbps from 10 CBR sources.

ADP’s adaptive nature. Being non-TCP protocols, UDP and ADP were, of course, unaffected by the use of

Reno-F.

Combined UDP and HTTP throughput: Next, we consider the combination of UDP and HTTP con-
nections. In Figure 6.7, we see that for ADV, the HTTP and UDP flows together obtained a somewhat
higher combined throughput than the UDP flows alone. The 5 UDP flows achieved approximately 90% of
the throughput observed for 10 UDP connections. Comparing this to the results presented in Figure 5.6, in
which the throughput of 5 UDP flows is about 95% of the 10-flow total, we see that the UDP flows were

operating at nearly full capacity. Together with the fact that the HTTP flows accounted for only 21% of the

119

combined HTTP/UDP throughput, this is an indication that UDP is consuming bandwidth to the exclusion
of HTTP.

For AODV, the 5-UDP throughput was just over 80% of that observed for 10 UDP flows, again in line
with expectations based on Figure 5.6. The contribution of the HTTP flows was even smaller than for ADV.
In fact, the combined HTTP/UDP throughput was slightly less than was observed for 10 UDP flows. Again,

it is apparent that UDP is attempting to monopolize the available bandwidth.

Combined ADP and HTTP throughput: We now consider the combination of HTTP and ADP with 5-
second buffering. For ADV, the combined HTTP and ADP flows have captured all the bandwidth consumed
by 10 ADP flows alone. With background CBR traffic, the 5 ADP flows obtained roughly 320 Kbps of
throughput, which is 54% of the throughput observed for 10 ADP flows. In contrast, the throughput for 5
ADP flows in Figure 5.6 is just over 400 Kbps. At the same time, the HTTP flows achieved nearly 230 Kbps
of throughput, which is almost 40% of the throughput shown for 10 HTTP connections using TCP Reno in
Figure 6.3. In this case, the ADP flows have adapted to the presence of the HTTP traffic, and HTTP and
ADP have established an equitable sharing of the available bandwidth.

With AODV, the sharing between ADP and HTTP is better than between UDP and HTTP, but it still
heavily favors ADP. This imbalance is due to AODV’s relatively poor HTTP performance. Based on Fig-
ure 5.6, the 5 ADP flows have consumed nearly as much bandwidth as possible, and still the combined
HTTP/ADP throughput lags that of 10 ADP flows alone.

As was the case in the HTTP-only simulations, Reno-F provided a significant performance boost to
the HTTP connections when AODV was the routing protocol. Reno-F had no impact on ADV’s HTTP
performance, however.

Looking at the combined throughput of HTTP and ADP with unlimited buffering, we see that HTTP ob-
tained less throughput than it did when combined with ADP using 5-second buffering. Unlimited buffering
allows ADP to take full advantage of the available capacity and this shifts the balance between ADP and
HTTP in ADP’s favor.

Figures 6.11 and 6.12 show the impact of combining UDP or ADP flows with HTTP traffic from the

Mean Service Time (sec)

ADV

200

B

a

o
T

I
Q
s}

a
o

Reno
Reno-F

Mean Service Time (sec)

120

AODV

200

=
a
o

=
o
s}

IS,
e
T

Reno
Reno-F

Q-
<
o

5 o F
w© ®
°

Q-
<&
o

Figure 6.11: Mean HTTP service time for ADV and AODV for 10 connections with no CBR background

traffic.

Mean Service Time (sec)

ADV

150

.
S
s

a
e

Reno
Reno-F

Mean Service Time (sec)

150

e
S
s

IS,
e
T

AODV

Reno
Reno-F

Q-
<
o

Q
>
+
Al

R
©
o

N
<<
Q K
ﬁ§ 1=
%

Figure 6.12: Mean HTTP service time for ADV and AODV for 10 connections with 100 Kbps from 10 CBR
sources.

121

perspective of mean service time. When combined with video traffic carried by ADP, the Web sessions took
substantially longer to finish, especially for AODV. Nevertheless, due to the inequitable sharing of available
bandwidth, service times were by far the highest when the competing traffic was carried by UDP. The use

of Reno-F resulted in measurable reductions in mean service time for AODV, but did not benefit ADV.

6.3 Concluding remarks

In Chapter 4, we showed that TCP Reno-F can significantly improve TCP performance in MANETSs when
the TCP traffic is produced by an FTP file transfer. In that case, only one TCP connection is opened and
there are always packets ready to send. We have shown in this chapter that Reno-F also provides a signifi-
cant boost to TCP performance for the short-lived connections and variable-bit-rate traffic that characterize
Web browser sessions. We have also shown that the ADV routing protocol performs quite well in this en-
vironment. ADV compares favorably with AODV when the number of connections is small, and clearly
outperforms AODV for a larger number of connections and higher volumes of offered traffic.

Our motivation in proposing the Adaptive Datagram Protocol of Chapter 5 was to create an alternative
for the UDP protocol that would adapt its sending rate to the available network capacity and thereby achieve
high throughputs while utilizing network resources efficiently. We have shown in this chapter that another
important benefit of ADP is that it is able to share network capacity equitably with TCP rather than stealing
bandwidth from TCP the way UDP does.

Given these results, we believe that the combination of TCP Reno-F and ADP (as the underlying trans-
port protocol for RTP, perhaps) can significantly enhance the ability of a MANET to carry the multimedia

traffic we expect to be present in the future.

Chapter 7

Conclusions

Wherever networking technology has led, the Internet has followed. This has been facilitated by the phi-
losophy of Internet protocol design, which seeks to accommodate network heterogeneity. Nevertheless,
extending Internet applications and services to mobile users in an ad hoc network is a challenging task.
An important, and interesting, part of meeting this challenge is the design of routing and transport layer
protocols that perform well in mobile ad hoc networks.

In this chapter, we summarize our work and describe the contributions of this dissertation. We begin with
a look at MANET routing protocol design and a discussion of the performance advantages of an adaptive
approach to proactive route maintenance. We review the results of our performance comparison of different
routing protocols, and we note the work we have done to tune ADV for good performance. Next, we discuss
the sender-side approach to improving TCP performance that we have used in our TCP Reno-F protocol,
and we summarize the results of our TCP performance analysis, which we believe validate our method. We
then consider the various performance benefits of our proposed Adaptive Datagram Protocol, and we discuss
how ADP and Reno-F together can improve multimedia performance in MANETSs. Finally, we summarize
our contributions to MANET performance analysis, and we conclude by noting some possible directions for

future research.

7.1 Routing protocol design

Two of the leading proposed MANET routing protocols, DSR and AODV, take an on-demand approach to

route maintenance, discovering and repairing routes on a strictly as-needed basis. This approach has been

122

123

shown to be superior to the purely proactive routing algorithm of the DSDV protocol, in which routes to all
possible destinations, whether in use or not, are maintained by means of periodic and triggered updates. In
Chapter 3, we examined the advantages and disadvantages of the adaptive, proactive approach to route main-
tenance taken in the proposed Adaptive Distance Vector (ADV) routing protocol. Using the ns-2 network
simulator with 802.11 wireless LAN extensions, we compared the performances of AODV, DSR, DSDV,
and ADV for varying traffic loads generated by CBR connections.

Our performance analysis clearly shows that ADV’s adaptive update strategy, in which the frequency
and size of route updates depend on the number of connections and volume of traffic, gives much better
performance than the traditional distance vector algorithm in DSDV. Furthermore, ADV is able to limit
the frequency of route updates, and hence the amount of routing overhead, and still do an excellent job
of route maintenance. Its lower routing overhead gives ADV a clear throughput advantage over the on-
demand protocols for medium to high levels of offered traffic. At lower traffic loads or when the number
of connections is small, the on-demand algorithms do offer superior performance. However, it should be
possible to tune ADV to address this shortcoming.

We have made modifications to ADV in order to improve its performance. In particular, we extended the
connection-initiation process to facilitate quicker establishment of TCP connections, where the traffic be-
tween sender and receiver will be flowing in both directions. An interesting finding of our TCP performance
analysis in Chapter 4 is that it is better to buffer UDP packets for short intervals and buffer TCP packets for
longer periods of time. So, we have modified ADV to employ two different buffer timeout values, one for

TCP traffic and one for non-TCP traffic.

7.2 Improving TCP performance

The performance of TCP in MANETS, and how best to maximize that performance, is an area of research
that is as yet largely unexplored. Techniques developed to improve TCP performance in cellular networks
and over satellite links are not helpful in multi-hop wireless networks. Researchers have primarily focused
on route failure notification schemes designed to mitigate the problems caused by TCP’s congestion-control

response to the noncongestion-related losses common in mobile, wireless environments. Another idea cur-

124

rently under investigation is to reliably predict impending route failures due to mobility so that alternate
routes can be identified before failures actually occur.

We have proposed two techniques for improving TCP performance in MANETSs which are based on
sender-side heuristics. The first technique, fixed RTO, is designed to address the negative impact on perfor-
mance resulting from the exponential backoff of TCP’s retransmit timeout interval (RTO). In our proposal,
when retransmit timeouts occur consecutively, i.e. no ACK is received for the retransmitted packet, we
double the RTO on the first timeout only. The RTO is not doubled on succeeding consecutive timeouts, but
rather is fixed. The idea is that, in a MANET, consecutive timeouts are likely to be the result of route fail-
ure rather than congestion. By increasing the frequency with which packets are retransmitted during route
failures, the fixed RTO method is intended to reduce the time taken to re-establish broken routes.

Our second proposal is to introduce a hold-down interval following a retransmit timeout. During this
period, any ACKs that arrive are processed in the usual way except that they do not trigger packet retransmis-
sions. The hold-down period ends, and normal TCP processing is resumed, when all the packets outstanding
when the timeout occurred have been ACKed or when the hold-down timer expires. The hold-down timer
technique is intended to prevent unnecessary packet retransmissions when the outstanding ACKSs are simply
delayed and arrive too late to avoid a timeout.

We evaluated the proposed TCP techniques using three MANET routing protocols. For this analysis,
we varied the number of TCP connections, the volume of background CBR traffic, and the number of CBR
connections. In addition to evaluating the effectiveness of our proposed sender-side heuristics, we assessed
the performance gains afforded by two existing TCP options, selective acknowledgements and delayed

acknowledgements.

TCP Reno-F

The performance analysis presented in Chapter 4 shows that our proposed fixed-RTO mechanism, in combi-
nation with TCP’s selective acknowledgements and delayed acknowledgements options, yields substantial
improvements in TCP performance for the on-demand protocols. We call this combination of fixed RTO and

TCP options the TCP Reno-F protocol. Reno-F works well for routing protocols with route maintenance

125

Table 7.1: Ranking of TCP Reno throughputs obtained using each routing protocol: 1 = highest, 3 = lowest.

| #TCP | #CBR | Traffic | DSR | AODV | ADV |

1 10 low 3 2 1
1 10 high 3 2 1
1 40 low 3 2 1
1 40 high 2 3 1
10 10 low 2 3 1
10 10 high 2 1 1
10 40 low 2 3 1
10 40 high 2 2 1

Table 7.2: Ranking of TCP Reno-F throughputs obtained using each routing protocol: 1 = highest, 3 =

lowest.

| #TCP | #CBR | Traffic | DSR | AODV | ADV |

1 10 low 2 1 1
1 10 high 2 1 1
1 40 low 2 2 1
1 40 high 2 2 1
10 10 low 1 2 3
10 10 high 1 1 2
10 40 low 1 2 3
10 40 high 1 1 2

mechanisms that can be stimulated by increasing the rate of packet retransmissions in response to the con-

secutive timeouts that occur during route failure. Reno-F is also beneficial in situations where route repair

times are extended. For example, a large increase in the number of hops from sender to receiver can result

in lengthy route discovery delays for on-demand protocols. In contrast, ADV’s proactive route repairs are

quick enough on average that Reno-F is able to provide only modest benefits.

Tables 7.1 and 7.2 rank the TCP throughputs obtained with TCP Reno and Reno-F by each of the routing

protocols. It is noteworthy that, with Reno-F, both AODV and DSR outperformed ADV as the number of

TCP connections was increased.

126

Hold-down timer

Adding the hold-down timer yielded some limited additional gains in throughput in the 1-TCP connection
case. This benefit was not observed for multiple TCPs, however. The hold-down timer is designed to mit-
igate the negative effect that a train of ACKSs, arriving in rapid order after a route has been re-established,
can have on the sender’s packet retransmission mechanism. If this scenario was less likely to occur with
multiple TCP flows, that could explain the hold-down timer’s reduced effectiveness. Nevertheless, we be-
lieve the gains derived from the hold-down timer for a single TCP connection demonstrates the feasibility

of improving TCP performance by the use of sender-based mechanisms.

7.3 Adaptive Datagram Protocol

We observed in our simulations that, in MANETS, TCP is capable of achieving higher throughput than UDP,
a departure from normal expectations in a wired network. We believe the explanation for this result is that
TCP is able to conform its send rate to the rapid changes in available bandwidth that can occur as a result of
changes in path length from sender to receiver, while UDP simply transmits data at a fixed rate. Because the
wireless network is a shared medium, the resulting contention at the MAC layer may have a negative impact
on UDP throughput over and beyond simple packet loss.

We have designed an adaptive unreliable packet delivery service in which the receiver acknowledges
delivered packets and the sender injects new packets into the network at the rate at which it receives these
ACKSs. Packets are buffered by the sender pending transmission. The size of the buffer is set by the applica-
tion. If the application generates packets at a faster rate than the network can handle, causing the buffer to
fill up, packets are dropped from the buffer (oldest packets first).

For performance reasons, we considered using a windowing algorithm based on TCP’s congestion win-
dow. However, we discovered that very good performance can be attained using a simple ACK-clocking
scheme, in which the arrival of any acknowledgement (as opposed to a specific outstanding ACK) triggers
the next packet transmission. A transmit timer similar to TCP’s retransmit timer is used to keep the sender

from stalling in the event of packet or ACK loss.

127

In Chapter 5, we showed that this protocol, which we call the Adaptive Datagram Protocol, is able to
achieve high throughputs while very efficiently utilizing network resources. We have shown that with un-
limited packet buffering and a sufficiently high application sending rate, ADP is able to achieve throughputs
as high as those obtained with TCP. ADP’s efficiency derives from the fact that when the application rate
exceeds network capacity, ADP drops the excess packets from its buffer rather than injecting them into the
network where they will consume bandwidth and router queue space, only to be dropped before reaching
the receiver. Furthermore, ADP sends more packets when the number of hops between sender and receiver
is small, and fewer packets when the the number of hops is large. This reduces the average number of hops
taken by successfully delivered packets, and thus reduces the volume of MAC-layer traffic.

The Real-Time Transport Protocol (RTP) is used in the wired Internet to deliver delay-sensitive traffic
via an underlying transport protocol, typically UDP, while providing feedback the application can use to
adjust its sending rate as necessary to satisfy its latency constraints. We envision ADP as an alternative to
UDP as the underlying transport protocol when RTP-based applications are deployed in a mobile ad hoc

network.

7.4 Performance analysis

A number of studies have compared the performance of different MANET routing protocols for UDP traffic.
There is a lack, however, of such studies for TCP traffic, either by itself or in combination with UDP traffic.
This is indicative of the early stage of MANET transport layer protocol research. We believe it is important
to conduct these evaluations, because they help to elucidate performance problems and serve as benchmarks
for judging the merit of techniques proposed to alleviate those problems.

To our knowledge, ours is the most extensive study of TCP performance over MANET routing protocols
to date. Only one study that we are familiar with has considered more than one routing protocol [2]. Ours
is the first study to measure performance for multiple TCP connections, and the first to use performance
metrics other than file transfer time or throughput. It is also the first performance evaluation to include
background UDP flows along with the TCP traffic.

We have also utilized two types of simulated network traffic that, to our knowledge, have not been used

128

in other MANET performance studies. For our analysis of ADP performance in Chapter 5, we simulated
variable-bit-rate traffic modeled after the simulated video traffic described in [41]. In Chapter 6, we used an
HTTP traffic generator [28] to extend our TCP performance analysis to include the traffic from simulated
Web browser sessions. We then combined our simulated video and HTTP flows to create a multimedia

workload for testing how fairly ADP and TCP are able to share available network capacity.

7.5 Futureresearch directions

Our research has demonstrated that performance benefits can be derived from making transport protocols
more adaptive to the dynamic network conditions in a mobile ad hoc network. This work points the way to
several avenues for future research.

In the concluding remarks of Chapter 5, we noted that it should be possible to reduce the volume of
ACK traffic in the Adaptive Datagram Protocol, thereby increasing the efficiency of ADP. One option is to
implement delayed acknowledgements, whereby ACKs are sent in response to the receipt of two or more
data packets rather than for every packet. Because the ADP sender uses a transmit timer, it may not be
necessary to implement a timer at the receiver to ensure a maximum delay. Another option is to add an
“ACK-vector” to the ADP packet header. The receiver will use this vector to inform the sender of the
acknowledgement status of some number of packets with sequence numbers preceding the packet currently
being ACKed. The use of an “ACK-vector” can provide redundancy in the event any of the previous ACKs
were lost.

We envision ADP as a transport protocol for multimedia traffic, for example streaming video. In this
regard, we are interested in pursuing the idea of using ADP instead of UDP as the underlying transport
protocol used by the Real-Time Transport Protocol (RTP). We believe an interesting experiment would be
to compare the quality of video images transmitted over a MANET using RTP and ADP with that of images
carried by RTP and UDP.

We would like to continue our experiments with TCP Reno-F. A concern that might be raised with
respect to the fixed-RTO technique is that this departure from standard TCP congestion control may lead

to network congestion problems, especially if Reno-F is used in a fixed network. We believe this concern

129

can be addressed by fixing the RTO for the first few consecutive timeouts and then reverting to the standard
exponential backoff of the RTO. The bandwidths in today’s Internet are two or more orders of magnitude
greater than were available in the 1980°s when TCP’s congestion control mechanisms were first developed.
It may be the case that a limited number of packet retransmissions has such a negligible impact these days
that we can delay the exponential backoff of the RTO long enough to obtain the performance gains of Reno-F
without increasing network congestion measurably.

Another interesting topic for further research is the interplay of node mobility and transport protocol
performance. We believe it would be useful to measure transport protocol performance over a wide range
of node mobilities. There is an ongoing debate among MANET researchers as to the impact of mobility on
performance. It might seem intuitive to expect node mobility, which causes route failure, to always have
a negative impact on throughput. In fact, node mobility may increase throughput by virtue of facilitating

quicker route repair.

Appendix A

Additional ADV Performance Analysis
Results

A.1l Steady state behavior of a high mobility network

In this section, we present additional performance results showing the steady state behavior of a high mo-

bility network.

A.1.1 50-node 1500m x 300m network, 25 connections

Figures A.1 - A.3 give the results for 25 CBR connections in a 50-node network moving in a 1500m x 300m
field. The node density in this field is higher than in the 2000m x 1000m square field in the performance
analysis of Chapter 3, and there are not sudden, large changes in path lengths like those that can occur when
nodes wrap-around in the square field. As a consequence, route failures in the rectangular field are shorter
on average and fewer in number, as evidenced in Figure A.3 by the lower level of routing activity for the
on-demand protocols compared to the square-field 25-connection case (see Figure 3.5). Because ADV route
updates are proactive, the level of routing activity is about the same for the two fields. All three protocols
yield higher throughputs than they did in the square field. In particular, DSR’s peak throughput improves
from just under 200 Kbps to around 300 Kbps. As shown in Figure A.1, AODV and DSR saturate at much
higher levels of offered traffic than before, and delivery fractions are very high for all three protocols, with

ADV delivering nearly 100% of the CBR packets.

130

10000 T T T
AODV
DSR
A—A ADV-1sec
) &—e ADV-5sec
<
& 1000 | E
=3
o
‘@
E
>
2 100 k!
L
<
-
10
0.0 100.0 200.0 300.0 400.0

50 Nodes, 1500m x 300m Field

25 Connections, 0 Pause Time
T

Offered Traffic (Kbps)

500.0

Packet Delivery Fraction (%)

100.0

@
o
o

o
o
o

IN
o
o

n
o
o

131

50 Nodes, 1500m x 300m Field

25 Connections, 0 Pause Time

AODV
DSR 4
44— ADV-1sec
®—® ADV-5sec

L L L
200.0 300.0 400.0

Offered Traffic (Kbps)

500.0

Figure A.1: Packet latency and delivery fraction for 25 connections in a 50-node network on a 1500m x
300m field.

500.0

100.0

IP Layer Routing Overhead (pkt/s)

0.0

0.0

Throughput (Kbps)

500.0

400.0

300.0

200.0

100.0

0.0

0.0

50 Nodes, 1500m x 300m Field

25 Connections, 0 Pause Time

AODV
DSR

A—A ADV-1sec
o—e ADV-5sec

200.0 300.0 400.0

Offered Traffic (Kbps)

100.0

500.0

Figure A.2: Throughput for 25 connections in a 50-node network on a 1500m x 300m field.

50 Nodes, 1500m x 300m Field

25 Connections, 0 Pause Time

400.0
300.0

200.0

e

AODV

DSR
A—aA ADV-1sec
®—e ADV-5sec

L L L
200.0 300.0 400.0

Offered Traffic (Kbps)

L
100.0

500.0

IP Layer Routing Overhead (Kbps)

500.0

400.0

300.0

200.0

100.0

0.0

0.0

50 Nodes, 1500m x 300m Field

25 Connections, 0 Pause Time

AODV

DSR
A—A ADV-1sec]
o—e ADV-5sec

L L L
200.0 300.0 400.0

Offered Traffic (Kbps)

i
100.0 500.0

Figure A.3: IP-layer routing overhead for 25 connections in a 50-node network on a 1500m x 300m field.

100 Nodes, 2200m x 600m Field

25 Connections, 0 Pause Time
10000

AODV

DSR
A—A ADV-1sec
&—® ADV-5sec 3

1000

Latency (ms) [log scale]
=
8

10
0.0

200.0 300.0 400.0

Offered Traffic (Kbps)

100.0 500.0

100.0

Packet Delivery Fraction (%)

0.0

0.0

132

100 Nodes, 2200m x 600m Field

25 Connections, 0 Pause Time

20.0

AODV

DSR
A—aA ADV-1sec
—e ADV-5sec

200.0 300.0 400.0

Offered Traffic (Kbps)

100.0 500.0

Figure A.4: Packet latency and delivery fraction for 25 connections in a 100-node network on a 2200m x

600m field.

500.0

100 Nodes, 2200m x 600m Field

25 Connections, 0 Pause Time
T T

400.0

300.0 -

200.0 -

Throughput (Kbps)

100.0 -

AODV

DSR
A—=A ADV-1sec
®—e ADV-5sec

0.0
0.0

L L L
200.0 300.0 400.0 500.0

Offered Traffic (Kbps)

L
100.0

Figure A.5: Throughput for 25 connections in a 100-node network on a 2200m x 600m field.

A.1.2 100-node 2600m x 600m network, 25 connections

Figures A.4 - A.6 give the results observed for 25 CBR connections in a 100-node network moving in

a 2600m x 600m field. The node density in this field is roughly half that of the 1500m x 300m field.

Comparing Figure A.4 with Figure A.1, we see that the lower node density results in higher packet latencies

and lower packet delivery rates, especially for DSR. All three routing protocols saturate at lower levels of

offered traffic.

133

100 Nodes, 2200m x 600m Field 100 Nodes, 2200m x 600m Field
25 Connections, 0 Pause Time 25 Connections, 0 Pause Time
1200.0 T T T T 1000.0
AODV AODV

DSR
A—A ADV-1sec
®—@ ADV-5sec

DSR
800.0 - A—a ADV-1sec
®—e ADV-5sec

1000.0 -
800.0
600.0

600.0

400.0 -

3
200.0 |

400.0 -

200.0 s

IP Layer Routing Overhead (pkt/s)
IP Layer Routing Overhead (Kbps)

0.0 0.0
0.0 100.0 200.0 300.0 400.0 500.0 0.0 100.0 200.0 300.0 400.0 500.0
Offered Traffic (Kbps) Offered Traffic (Kbps)

Figure A.6: IP-layer routing overhead for 25 connections in a 100-node network on a 2200m x 600m field.

100 Nodes, 2200m x 600m Field 100 Nodes, 2200m x 600m Field
100 Connections, 0 Pause Time 100 Connections, 0 Pause Time
10000 : : . : 100.0 PP
80.0
@ 3 g
S <
3 1000 | é
S E 60.0
@ >
0
£ 2
© 4
§ 100 e 40.0 b
3]
2 AODV 3
— DSR a AODV
A—A ADV-1sec 20.0 DSR
®—e ADV-5sec A—=A ADV-1sec
®—e ADV-5sec
0.0

10 L L L L L L L L
0.0 100.0 200.0 300.0 400.0 500.0 0.0 100.0 200.0 300.0 400.0 500.0

Offered Traffic (Kbps) Offered Traffic (Kbps)

Figure A.7: Packet latency and delivery fraction for 100 connections in a 100-node network on a 2200m x
600m field.

A.1.3 100-node 2600m x 600m network, 100 connections

Figures A.7 - A.9 give the results observed for 100 CBR connections in a 100-node network moving in a
2600m x 600m field. Managing the larger number of connections requires a substantially higher level of
routing overhead for all three routing protocols, as shown in Figure A.9. The impact of more connections
on packet latency, delivery fraction, and throughput is greatest for the on-demand protocols. Although it
saturates at a lower level of offered traffic, ADV is able to achieve a very high packet delivery rate for

network loads below its saturation point.

1200.0
Q)
£ 10000
S
g
3 8000
=
[
é
o, 6000
£
s
o
o 400.0
g
3
a 200

0.0

0.0

Throughput (Kbps)

500.0

400.0

300.0

200.0

100.0

0.0

0.0

100 Nodes, 2200m x 600m Field

100 Connections, 0 Pause Time

AODV

DSR
A—=A ADV-1sec 1
—@ ADV-5sec

200.0 300.0 400.0

Offered Traffic (Kbps)

100.0

500.0

1

Figure A.8: Throughput for 100 connections in a 100-node network on a 2200m x 600m field.

100 Nodes, 2200m x 600m Field

100 Connections, 0 Pause Time

AODV

DSR
A—A ADV-1sec
®—@ ADV-5sec

e

200.0 300.0 400.0

Offered Traffic (Kbps)

100.0

500.0

1000.0

IP Layer Routing Overhead (Kbps)

800.0

600.0

400.0

200.0

0.0

100 Nodes, 2200m x 600m Field

100 Connections, 0 Pause Time

34

AODV

DSR
A—A ADV-1sec
—@ ADV-5sec

0.0

200.0 300.0 400.0

Offered Traffic (Kbps)

100.0

500.0

Figure A.9: IP-layer routing overhead for 100 connections in a 100-node network on a 2200m x 600m field.

135

100 Nodes, 2200m x 600m Field 100 Nodes, 2200m x 600m Field

25 Connections, 100s Pause Time 25 Connections, 100s Pause Time
10000 T T T T 100.0

AODV

DSR
A—A ADV-1sec
&—® ADV-5sec 3

1000

Latency (ms) [log scale]
=
8

AODV
20.0 - DSR
A—aA ADV-1sec
—e ADV-5sec

Packet Delivery Fraction (%)

10 L L L L 0.0 L L L L
0.0 100.0 200.0 300.0 400.0 500.0 0.0 100.0 200.0 300.0 400.0 500.0

Offered Traffic (Kbps) Offered Traffic (Kbps)

Figure A.10: Packet latency and delivery fraction for 25 connections in a low-mobility 100-node network
on a 2200m x 600m field.

100 Nodes, 2200m x 600m Field

25 Connections, 100s Pause Time
500.0 T T

AODV
DSR
400.0 - A&—AADV-1sec
o—e ADV-5sec

300.0 -

200.0 -

Throughput (Kbps)

100.0 -

0.0 L L L L
0.0 100.0 200.0 300.0 400.0 500.0

Offered Traffic (Kbps)

Figure A.11: Throughput for 25 connections in a low-mobility 100-node network on a 2200m x 600m field.

A.2 Steady state behavior of alow mobility networ k

In this section, we present additional performance results showing the steady state behavior of a low mobility
network. Low node mobility was simulated by setting the pause time to 100 seconds. As a result of reduced
node mobility, the routing overhead was somewhat reduced for the on-demand routing protocols and all

three protocols saturated at slightly higher levels of offered traffic.

A.2.1 100-node 2600m x 600m network, 25 connections

Figures A.10 - A.12 give the results observed for 25 CBR connections in a 100-node network moving in a

2600m x 600m field.

100 Nodes, 2200m x 600m Field

25 Connections, 100s Pause Time

1200.0
. AODV
4 DSR
= 1000.0 |
5 A—A ADV-1sec
=~ ®—@ ADV-5sec
k:
5] 800.0
<
9]
3
o> 6000 -
£
5
<}
4 400.0 -
g
3
z 2000 :{.r__ - aaaa
0.0
0.0 100.0 200.0 300.0 400.0 500.0

Offered Traffic (Kbps)

IP Layer Routing Overhead (Kbps)

136

100 Nodes, 2200m x 600m Field

25 Connections, 100s Pause Time

1000.0
AODV
DSR
800.0 - A—a ADV-1sec
®—e ADV-5sec
600.0
400.0 -
A
2000 ///_‘.a'«_ﬂ_*q
0.0
0.0 100.0 200.0 300.0 400.0 500.0

Offered Traffic (Kbps)

Figure A.12: IP-layer routing overhead for 25 connections in a low-mobility 100-node network on a 2200m

X 600m field.

100 Nodes, 2200m x 600m Field

100 Connections, 100s Pause Time
T T

10000
AODV
DSR
A—A ADV-1sec
@ ®—e ADV-5sec
<
Q1000 b
j=2
2
@
£
>
2
g 100
<
-
10 . L . .
0.0 100.0 200.0 300.0 400.0

Offered Traffic (Kbps)

500.0

Packet Delivery Fraction (%)

Figure A.13: Packet latency and delivery fraction for 100 connections

on a 2200m x 600m field.

A.2.2 100-node 2600m x 600m network, 100 connections

100 Nodes, 2200m x 600m Field

100 Connections, 100s Pause Time
T

100.0 S
80.0
60.0
40.0
AODV
20.0 DSR
A&—A ADV-1sec
®—e ADV-5sec
0.0
0.0 100.0 200.0 300.0 400.0 500.0

Offered Traffic (Kbps)

in a low-mobility 100-node network

Figures A.13 - A.15 give the results observed for 100 CBR connections in a 100-node network moving in a

2600m x 600m field.

Throughput (Kbps)

500.0

100 Nodes, 2200m x 600m Field

100 Connections, 100s Pause Time
T T

400.0

300.0

200.0 -

100.0 -

0.0

AODV

DSR
A—=A ADV-1sec
®—e ADV-5sec

0.0

L L L
200.0 300.0 400.0

Offered Traffic (Kbps)

L
100.0

500.0

Figure A.14: Throughput for 100 connections in a low-mobility 100-node

field.

100 Nodes, 2200m x 600m Field

100 Connections, 100s Pause Time

1200.0
Q
£ 10000 -
S
K
S 8000 -
=
[
é
o, 6000 -
£
s
o
o 400.0 -
g
3
a 200

0.0

o

AODV

DSR
A—A ADV-1sec
®—@ ADV-5sec

0.0

200.0 300.0 400.0

Offered Traffic (Kbps)

100.0

500.0

IP Layer Routing Overhead (Kbps)

1000.0

137

network on a 2200m x 600m

100 Nodes, 2200m x 600m Field

100 Connections, 100s Pause Time

800.0 -

600.0

400.0 -

200.0

0.0

AODV

DSR
A—A ADV-1sec
®—e ADV-5sec

0.0

200.0 300.0 400.0

Offered Traffic (Kbps)

100.0 500.0

Figure A.15: IP-layer routing overhead for 100 connections in a low-mobility 100-node network on a 2200m
X 600m field.

138

50 Nodes, 1000m x 1000m Field 50 Nodes, 1000m x 1000m Field
Transient Case, 200 Kbps Max Traffic Transient Case, 200 Kbps Max Traffic
10000 T T T T T T 100.0 T T -
— & ?
AODV ﬁ
DSR
A—A ADV-1sec g 800 b
o) ®— ADV-5sec =~
] s
Q1000 F £
S S 60.0
—~ >
) =
E .\.—H—ﬂ//.\q B
a g 40.0
c 4
g 100 ‘—‘_’4‘/‘,/4.\“ =
S] AODV
<]
& 200} DSR
A—=A ADV-1sec
—e ADV-5sec
10 0.0
0.0 60.0 120.0 180.0 240.0 300.0 360.0 420.0 0.0 60.0 120.0 180.0 240.0 300.0 360.0 420.0
Time (s) Time (s)

Figure A.16: Packet latency and delivery fraction for transient case with 200 Kbps max traffic in a 50-node
network on a 1000m x 1000m field.

50 Nodes, 1000m x 1000m Field
Transient Case, 200 Kbps Max Traffic

200.0
AODV
DSR
A—=A ADV-1sec
150.0 - e—e ADV-5sec
@
=%
a
<
2 1000
<
=)
>
<}
=
=
50.0
0.0
0.0 60.0 120.0 180.0 240.0 300.0 360.0 420.0

Time (s)

Figure A.17: Throughput for transient case with 200 Kbps max traffic in a 50-node network on a 1000m x
1000m field.

A.3 Transient behavior of a high mobility network

In this section, we present additional performance results showing the transient state behavior of a high
mobility, 50-node network in the square field. The maximum offered traffic in Figures A.16 - A.18 is 200

Kbps. In Figures A.19 - A.21, the offered traffic peaks at 300 Khbps.

500.0

50 Nodes, 1000m x 1000m Field

Transient Case, 200 Kbps Max Traffic

400.0

300.0

200.0

100.0 -

IP Layer Routing Overhead (pkt/s)

0.0

AODV

DSR
A&—aA ADV-1sec
®—e ADV-5sec

g —o o o

0.0

180.0 240.0 300.0 360.0

Time (s)

60.0 120.0 420.0

500.0

IP Layer Routing Overhead (Kbps)

0.0

0.0

50 Nodes, 1000m x 1000m Field

Transient Case, 200 Kbps Max Traffic

139

400.0

300.0 -

200.0 -

100.0 -

AODV

DSR
A&— ADV-1sec
&—e ADV-5sec

180.0 240.0 300.0 360.0

Time (s)

60.0 120.0

420.0

Figure A.18: IP-layer routing overhead for transient case with 200 Kbps max traffic in a 50-node network
on a 1000m x 1000m field.

50 Nodes, 1000m x 1000m Field

Transient Case, 300 Kbps Max Traffic

AODV

DSR
A—A ADV-1sec
—® ADV-5sec

%‘

10000
@
[+
Q1000 |
j=2
2
m
£
>
2
15 100
I
-
10
0.0

180.0 240.0 300.0 360.0

Time (s)

60.0 120.0 420.0

100.0

Packet Delivery Fraction (%)

0.0

0.0

50 Nodes, 1000m x 1000m Field

Transient Case, 300 Kbps Max Traffic

20.0 -

;/k_,,.\‘_._/ﬁ/‘——““—"—‘—:

AODV

DSR
A—aA ADV-1sec
®—e ADV-5sec

180.0 240.0 300.0 360.0

Time (s)

60.0 120.0

420.0

Figure A.19: Packet latency and delivery fraction for transient case with 300 Kbps max traffic in a 50-node
network on a 1000m x 1000m field.

50 Nodes, 1000m x 1000m Field

300.0

250.0

200.0 -

150.0

Throughput (Kbps)

100.0

50.0 -

Transient Case, 300 Kbps Max Traffic

AODV

DSR
A—=A ADV-1sec
o—= ADV-5sec

0.0
0.0

180.0 240.0 300.0 360.0

Time (s)

60.0 120.0 420.0

Figure A.20: Throughput for transient case with 300 Kbps max traffic in a 50-node network on a 1000m x
1000m field.

140

50 Nodes, 1000m x 1000m Field 50 Nodes, 1000m x 1000m Field
Transient Case, 300 Kbps Max Traffic Transient Case, 300 Kbps Max Traffic
500.0 T T T T T 500.0 T T T T T
AODV AODV
DSR DSR
4000 r a—a ADV-1sec 7] 4000 - A—aA ADV-1sec 7]

®—e ADV-5sec &—e ADV-5sec

300.0 q 300.0 - q

200.0 200.0 - 1

IP Layer Routing Overhead (pkt/s)
IP Layer Routing Overhead (Kbps)

100.0 | e o o 4 100.0 + B
0.0 0.0
0.0 60.0 120.0 180.0 240.0 300.0 360.0 420.0 0.0 60.0 120.0 180.0 240.0 300.0 360.0 420.0
Time (s) Time (s)

Figure A.21: IP-layer routing overhead for transient case with 300 Kbps max traffic in a 50-node network
on a 1000m x 1000m field.

Appendix B

Additional TCP Performance Analysis
Results

B.1 Performanceresultsfor 1 TCP connection

In this section, we present additional performance results for 1 TCP connection in a 50-node network moving
in a 1000m x 1000m field. These simulations included background traffic loads of 100 Kbps and 200 Kbps

from 10 and 40 CBR connections.

141

142

100.0 05 1
@ A—AADV A—AADV
53 AODV AODV
3 DSR 04 f 099 F DSR |
[=2)
o —~
= 100¢F 1 4
) 8 A\A/‘—’—‘\A
8 So03f E £ 098 i
=~ = <%
g 2 K]
= < o
= (=) 0] 2
5 / So2f] 097 | 1
3 | | e
é 10 e ye & & S
o
[§] o1l A—AADV | 0.96 -]
a AODV
4] DSR
01 0 0.95
o * - 0 0 o + + o o o + + 0 o
& I A @ i S < & S F
S © & &© & I + &
@ S & S @ S
& RS RS
500 250 1600
A—AADV A—4A ADV A—A ADV
& AODV % AODV 1400 [AODV 1
2 400 | DSR] S 200 | DSR @ DSR
e < 2 1200 9
K 3 g
2 2 § 1000 [p
S 300 — S 150 1 3
> > <
c; % 2 soof .]
< £ o & A
S 200 t E S 100 E 9]
3 S 600 |]
[¢ 8
5 5 & » & 4 4
) $ Q a0}]
— 100 - - N - 50 b =
a & & R x A
£ & 200 |]
0 0 0
© + +) 0 o + + o o o + + 9 0
& o 2 £ & & B ¥ e & & o P & &
&0 S & & S & & S o
&S & S

Figure B.1: Connect times, throughputs, goodputs, and routing overhead for 1 TCP connection with a 100
Kbps background load from 10 CBR connections.

100.0 05
— A—AADV
T AODV
2 DSR 04 1
g .
= 100} 1 Z
8 Sosl a0—0 00—]
g F
= 5
3 302f]
g 10} s] [S
< 4y
o o1l A—AADV]
S AODV
= DSR
01 0
o * - o o 0 + + o o
O T) & gt g S
2] Q*g’ \&(Q_*Q/ \8(
\?\0
500 250
w @
2 400 |] S 200 |]
o é & & 4 4 A
3 A—AADV T
o AODV g
g o DSR | g 0 1
o] ¢]
3 200 - 1 2 100 - 1
I=} o
[3
-
I 100 | — 8 s0r ADV g
[o AODV
= = DSR
0 0
N s +) 0 o - + o o
& © & & o) & & & G &
s .1@ & & +®6 6’(((
& 8 &S

Goodput

MAC Layer Overhead (pkt/s)

0.99

0.98

0.97

0.96

0.95

1600

1400 [

1200

1000

800

600

400

200

143

A—AADV
AODV
L DSR

© S & O O
& S R A
@ X
e & &
A—A ADV
AODV]
DSR
° + + o o
& SIS & &
& & o
& &

Figure B.2: Connect times, throughputs, goodputs, and routing overhead for 1 TCP connection with a 100

Kbps background load from 40 CBR connections.

TCP Connect Time (sec) [log scale]

IP Layer Routing Overhead (pkt/s)

100.0

=
o
S

=
o

01

500

A—A ADV
AODV
DSR

IS
S
S

©
=
S

Ny
S
S

o
1=}
S

A—AADV
AODV
DSR

0.5

=3 o o
[N w IS

Throughput (Mbps)

o
fa

250

200

150

100

50

IP Layer Routing Overhead (Kbps)

A—4A ADV
AODV
DSR

g

* 0 0
R & &
§
2 &F &
A—A ADV
AODV
DSR 4
+ + o 0
N
2" X
o & &

Goodput

MAC Layer Overhead (pkt/s)

0.98

0.96

0.94

0.92

0.9

1600

1400

1200

1000

800

600

400

200

144

A—AADV
AODV
DSR

© d- B
o P
&
A—AADV
AODV 1
DSR
.
o + o
o 3 A
S
o

Figure B.3: Connect times, throughputs, goodputs, and routing overhead for 1 TCP connection with a 200

Kbps background load from 10 CBR connections.

TCP Connect Time (sec) [log scale]

IP Layer Routing Overhead (pkt/s)

Figure B.4: Connect times, throughputs, goodputs,

100.0
A—AADV
AODV
DSR
10.0 1
10 | 1
S & " —
0.1
o N o Q QO
N T)
K «° &
500
400 - 1
A—AADV
AODV
300 oSk]
200 4
W a——a———4—————————a
0
° = & O Y
& 9 0\?0 géx K2
=) 4@ &
& ot

0.5

=3 o o
[N w IS

Throughput (Mbps)

=3
e

250

200

150

100

50

IP Layer Routing Overhead (Kbps)

A—AADV
AODV
r DSR

o -
& o°

L A—AADV 4
AODV
DSR
° o o o 0
o o° XOVO & ((x,ox
2" X
o & &

Kbps background load from 40 CBR connections.

Goodput

MAC Layer Overhead (pkt/s)

0.98

0.96

0.94

0.92

0.9

1600

1400

1200

1000

800

600

400

200

145

A—AADV
AODV
L DSR

© + * o o
XS S R A
=3 ¢ \ﬁ@ 0\8(
L A]
[A—AADV 1]
AODV
E DSR 4
o + + o o
& 9 XO‘?O éxgx ngx
3 X
K ¥ &

and routing overhead for 1 TCP connection with a 200

146

2 TCP Connections 5 TCP Connections 10 TCP Connections

A—A ADV] [a—anDV
0.9 AODV 1 09 AODV] 09
DSR DSR

06

o ¢
IS

A—A ADV
02t 1 02 1 02 AODV
DSR

TCP Throughput (Mbps)
&

TCP Throughput (Mbps)
&

TCP Throughput (Mbps)
o
&

o A+ S+ Q9 S o ol QO ° o ol QO
<& B & = & & & 2 & & & Z
3 & S & S
& &

Figure B.5: Combined throughputs for multiple TCP connections with a 200 Kbps, 10-CBR background.

2 TCP Connections 5 TCP Connections 10 TCP Connections
T a—anpv 1 [a—anpv *
0.9 AODV 1 09 AODV] 09 -
DSR DSR
% 0.8 B 5 08 - % 0.8
) & &
é 0.7 é 0.7 é 0.7
é 0.6 § 06 [§ 0.6 — A
§’ 0.5 g 0.5 g 0.5
= = a4 ——— % £ r
'E 0.4 ﬁ 0.4 ﬁ 0.4
'&) 03 — é 03 é 03 - A4 ADV
AODV
2 2 2
0. 0. 0. DSR
0.1 0.1 0.1
o 0 0
© oF oF Q o o ok Q o o ok 9
<€ & & & ¢ & K) ¢ & &)
K Q\\@ Q\+Q' ° Q\+Q'

Figure B.6: Combined throughputs for multiple TCP connections with a 200 Kbps, 40-CBR background.

B.2 Performanceresultsfor multiple TCP connections

In this section, we present additional performance results for multiple TCP connections in a 50-node network
moving in a 1000m x 1000m field. Figures B.5 and B.6 show the TCP throughputs achieved by each routing
protocol for each combination of performance-improvement techniques. A background traffic load of 200
Kbps was included in those simulations. Figures B.7 - B.10 present the results obtained for TCP Reno and

Reno-F with a 100 Kbps background load from 40 CBR connections.

100.0
A—AADV
AODV
DSR
100 ¢ 1

TCP Connect Time (sec) [log scale]

0.1 L L L L

|

TCP Throughput (Mbps)

0 2 4 6 8 10
Number of TCP Connections
500
A—A ADV
0 AODV
2 a0l DSR E
e
T
@
Q
=
o 300 1
>
(0]
o
£
5 200 | i
o
14
g
@
Ry — N A]
[
0
0 2 4 6 8 10

Number of TCP Connections

IP Layer Routing Overhead (Kbps)

05

04

03

02

0.1

300

N
a
3

[N}
IS}
1S

-
@
3

=
o
S

I3
S

4 6 8
Number of TCP Connections

A—AADV
AODV 1
DSR
4 6 8 10

Number of TCP Connections

TCP Goodput

MAC Layer Routing Overhead (pkt/s)

0.98

0.96

0.94

147

092 A—AADV
AODV
DSR
09
0 2 4 6 8 10
Number of TCP Connections
2000
1500 1
1000 1
50 pu—L
AODV
DSR
0
2 4 6 8 10

Number of TCP Connections

Figure B.7: Connect times, throughputs, goodputs, and routing overhead for TCP Reno with a 100 Kbps

40-CBR background.

100.0

A—AADV
AODV
DSR

Lo} ‘/‘\‘/‘]

TCP Connect Time (sec) [log scale]

01
0 2 4 6 8 10
Number of TCP Connections
500
A—AADV
@ AODV
g DSR
gaop —
kel
@
[}
£
5 300 | —
>
(0]
[
£
5 200 | 4
o
14
]
By
S 100 . N A]
[
0
0 2 4 6 8 10

Number of TCP Connections

TCP Throughput (Mbps)

IP Layer Routing Overhead (Kbps)

0.9
08 ////,/A
07 =
v
0.6
05
04
03
02 A—A ADV
’ AODV
0.1 DSR
0 . . .
0 4 6 8 10
Number of TCP Connections
300

250

200

150

100

50

A—A ADV
AODV
DSR
4 6 8 10

Number of TCP Connections

TCP Goodput

MAC Layer Routing Overhead (pkt/s)

0.98

0.96

0.94

092 A—AADV
AODV
DSR
09 ‘ ‘ ‘ ‘
0 2 4 6 8 10

2000

1500

1000

500

148

Number of TCP Connections

A—A ADV
AODV
DSR
2 4 6 8 10

Number of TCP Connections

Figure B.8: Connect times, throughputs, goodputs, and routing overhead for TCP Reno-F with a 100 Kbps

40-CBR background.

Reno
15
A—AADV
AODV
DSR
& 1t 1
<
>
3
c
2
©
-
& os
o 7l ’
o
0 2 4 6 8 10

Number of TCP Connections

CBR Latency (sec)

Reno-F
15
A—A ADV

AODV

DSR
I i
05 - —
0

0 2 4 6 8 10

Number of TCP Connections

Figure B.9: CBR packet latencies for TCP Reno and Reno-F with a 100 Kbps background load from 40

CBR connections

149

Reno Reno-F

100 100
0 - 4 % 4
80 - 1 80 1
70 - 4 70 b 4
60 - 60
50 - 50
40 + 40 -

30 - 30

CBR Packet Delivery Fraction (%)
CBR Packet Delivery Fraction (%)

20 A—AADV 20 A—A ADV
AODV AODV
0 DSR] 10 DSR
0 0
0 2 4 6 8 10 0 2 4 6 8 10
Number of TCP Connections Number of TCP Connections

Figure B.10: CBR packet delivery fractions for TCP Reno and Reno-F with a 100 Kbps background load
from 40 CBR connections.

5 TCP Connections 10 TCP Connections

100.0 100.0
== Reno == Reno

Reno-F Reno-F

=
o
o
-
1=
o

=
5
=
o

TCP Connect Time (sec) [log scale]
TCP Connect Time (sec) [log scale]

0.1 0.1

§° $° \3 \d
) > 2) e
R) oS K5

Figure B.11: Connect times for ADV for 5 and 10 TCP connections with a 200 Kbps background load from
10 CBR sources.

B.3 Effect of buffer refresh timeon TCP performance

In this section, we present additional buffer refresh time results for multiple TCP connections in a 50-node
network moving in a 1000m x 1000m field. These simulations included a 200 Kbps background traffic load

from 10 CBR sources.

150

5 TCP Connections 10 TCP Connections
15 15
Reno Reno
Reno-F Reno-F
n 7
s10¢t S10
< <
5 5
3 2
£ £
Ed E
3 3
= =
= =
5 05 % 05
= =
0.0 0.0
S5 s v ¥ N s 4 A
Q)) 2% 2 o © By 3
e & P N n)g} & oS ~

Figure B.12: Throughput for ADV for 5 and 10 TCP connections with a 200 Kbps background load from
10 CBR sources.

5 TCP Connections 10 TCP Connections

15 15

. Reno Reno
Reno-F Reno-F

[y
=)

CBR Packet Latency (sec)
o
2

CBR Packet Latency (sec)

0.0

Figure B.13: CBR packet latency for ADV for 5 and 10 TCP connections with a 200 Kbps background load
from 10 CBR sources.

5 TCP Connections 10 TCP Connections

100.0 100.0

Reno Reno
Reno-F Reno-F

a = @
o S =4
=3 =) o

CBR Packet Delivery Fraction (%)

CBR Packet Delivery Fraction (%)
N
3
[=)

0.0

§° $° N\ N\
& & N >

Figure B.14: CBR packet delivery fraction for ADV for 5 and 10 TCP connections with a 200 Kbps back-
ground load from 10 CBR sources.

Bibliography

[1] N. Abramson. The ALOHA system — another alternative for computer communication. In Fall Joint
Computer Conference, AFIPS Conference Proceedings, volume 37, pages 281-285, 1970.

[2] A. Ahuja, S. Agarwal, J. P. Singh, and R. Shorey. Performance of TCP over different routing protocols
in mobile ad-hoc networks. Proc. IEEE Vehicular Technology Conference (VTC 2000), May 2000.

[3] C. Alaettinoglu, A. U. Shankar, K. Dussa-Zieger, and |. Matta. Design and implementation of MaRS:
A routing testbed. Journal of Internetworking: Research and Experience, 5(1):17-41, 1994,

[4] E. Ayanoglu, S. Paul, T. F. LaPorta, K. K. Sabnani, and R. D. Gitlin. AIRMAIL.: A link-layer protocol
for wireless networks. Wireless Networks, 1(1):47-60, Feb. 1995.

[5] R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin, B. Park, and H. Song. PARSEC: A
parallel simulation environment for complex systems. IEEE Computer, 31(10):77-85, Oct. 1998.

[6] A.Bakre and B. R. Badrinath. I-TCP: Indirect TCP for mobile hosts. In Proc. 15th International Conf.
on Distributed Computing Systems (ICDCS), pages 136-143, May 1995.

[7] B. Bakshi, P. Krishna, N. H. Vaidya, and D. K. Pradhan. Improving performance of TCP over wireless
networks. In Proc. 17th International Conf. on Distributed Computing Systems (ICDCS), pages 365-
373, May 1997.

[8] H. Balakrishnan, S. Seshan, and R. H. Katz. Improving reliable transport and handoff performance in
cellular wireless networks. Wireless Networks, 1(4):469-481, Dec. 1995.

[9] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz. A comparison of mechanisms for
improving TCP performance over wireless links. IEEE/ACM Trans. on Networking, 5(6):756—769,
Dec. 1997.

[10] R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

[11] S. Biaz and N. H. Vaidya. Sender-based heuristics for distinguishing congestion losses from wireless
transmission losses. Technical Report 98-013, Dept. of Computer Science, Texas A&M University,
June 1998.

[12] R. V. Boppana and S. P. Konduru. An adaptive distance vector routing algorithm for mobile, ad hoc
networks. In Proc. 20th Annual Joint Conference of the IEEE Computer and Communications Societies
(IEEE INFOCOM 2001), volume 3, pages 1753-1762, Mar. 2001.

[13] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva. A performance comparison of multi-
hop wireless ad hoc network routing protocols. In Proc. 4th Annual ACM/IEEE International Conf. on
Mobile Computing and Networking (ACM MobiCom ’98), pages 85-97, Oct. 1998.

151

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

152

K. Brown and S. Singh. M-TCP: TCP for mobile cellular networks. ACM SIGCOMM Computer Com-
munication Review, 27(5):19-43, Oct. 1997.

R. Caceres and L. Iftode. Improving the performance of reliable transport protocols in mobile comput-
ing environments. IEEE Journal on Selected Areas in Communications, 13(5):850-857, June 1995.

S. Chakrabarti and A. Mishra. QoS issues in ad hoc wireless networks. IEEE Communications Maga-
zine, 39(2):142-148, Feb. 2001.

K. Chandran, S. Raghunathan, S. Venkatesan and R. Prakash. A feedback based scheme for improv-
ing TCP performance in ad-hoc wireless networks. In Proc. 18th International Conf. on Distributed
Computing Systems (ICDCS), pages 472-479, May 1998.

T. Clausen, P. Jacquet, A. Laouiti, P. Minet, P. Muhlethaler, A. Qayyum, and L. Viennot. Optimized
link state routing protocol. IETF Internet Draft. http://www.ietf.org/internet-drafts/draft-ietf-manet-
olsr-06.txt, Sep. 2001.

S. R. Das, R. Castaneda, J. Yan, and R. Sengupta. Comparative performance evaluation of routing
protocols for mobile, ad hoc networks. In Seventh International Conf. on Computer Communication
and Networks (IC3N), pages 153-161, Oct. 1998.

S. R. Das, C. E. Perkins, and E. M. Royer. Performance comparison of two on-demand routing proto-
cols for ad hoc networks. In Proc. 19th Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (IEEE INFOCOM 2000), volume 1, pages 3—-12, Mar. 2000.

R. Dube, C. D. Rais, K. Wang, and S. K. Tripathi. Signal stability based adaptive routing (SSA) for ad
hoc mobile networks. In IEEE Personal Communications, 4(1):36-45, Feb. 1997.

K. Fall and K. Varadhan. ns Manual. The VINT Project. UC Berkeley, LBL, USC/ISI, and Xerox
PARC. Available from http://www.isi.edu/nsnam/ns/ns-documentation.html, Apr. 2002.

S. Floyd. TCP and Explicit Congestion Notification. ACM SIGCOMM Computer Communication Re-
view, 24(5):8-23, Oct. 1994.

M. Gerla, K. Tang, and R. Bagrodia. TCP performance in wireless multi-hop networks. In Proc. of 2nd
IEEE Workshop on Mobile Computing Systems and Applications (WMCSA), pages 41-50, 1999.

T. Goff, J. Moronski, D. S. Phatak, and V. Gupta. Freeze-TCP: A true end-to-end TCP enhancement
mechanism for mobile environments. In Proc. 19th Annual Joint Conference of the IEEE Computer
and Communications Societies (IEEE INFOCOM 2000), volume 3, pages 1537-1545, Mar. 2000.

Z.J. Haas, M. R. Pearlman, and P. Samar. The zone routing protocol (ZRP) for ad hoc networks. IETF
Internet Draft. http://www.ietf.org/internet-drafts/draft-ietf-manet-zone-zrp-04.txt, July 2002.

C. Hedrick. Routing information protocol. RFC 1058, June 1988.

T. R. Henderson, E. Sahouria, S. McCanne, and R. H. Katz. On improving the fairness of TCP con-
gestion avoidance. In Proc. Global Telecommunications Conference (GLOBECOM 1998), volume 1,
pages 539-544, 1998.

G. Holland and N. Vaidya. Analysis of TCP performance over mobile ad hoc networks. In Proc. 5th
Annual ACM/IEEE International Conf. on Mobile Computing and Networking (ACM MobiCom *99),
pages 219-230, Aug. 1999.

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

153

Y.-C Hu and D. B. Johnson. Caching strategies in on-demand routing protocols for wireless ad hoc
networks. In Proc. 6th Annual ACM/IEEE International Conf. on Mobile Computing and Networking
(ACM MobiCom ’00), pages 231-242, Aug. 2000.

IEEE Computer Society CSMA/CD (Ethernet) Standards Committee. Carrier sense multiple access
with collision detection (CSMA/CD) access method and physical layer (PHY) specification. IEEE
Standard 802.3, 1993.

IEEE Computer Society LAN/MAN Standards Committee. Wireless LAN medium access control
(MAC) and physical layer (PHY) specifications. IEEE Standard 802.11-1999, 1999.

IETF MANET Working Group Charter. http://www.ietf.org/html.charters/manet-charter.html.

P. Johansson, T. Larsson, N. Hedman, B. Mielczarek, and M. Degermark. Scenario-based performance
analysis of routing protocols for mobile ad-hoc networks. In Proc. 5th Annual ACM/IEEE International
Conf. on Mobile Computing and Networking (ACM MobiCom ’99), pages 195-206, Aug. 1999.

D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc wireless networks. In Mobile Com-
puting, edited by T. Imielinski and H. Korth, chapter 5, pages 158-163, Kluwer-Academic Publishers,
1996.

D. B. Johnson, D. A. Maltz, Y.-C. Hu, and J. Jetcheva. The dynamic source routing protocol for mobile
ad hoc networks (DSR). IETF Internet Draft. http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-
07.txt, Feb. 2002.

J. Jubin and J. Tornow. The DARPA packet radio network protocols. Proceedings of the IEEE,
75(1):21-32, Jan. 1987.

A. Kapadia, A. Feng, and W.-C. Feng. The effects of inter-packet spacing on the delivery of multimedia
content. In Proc. 21st International Conf. on Distributed Computing Systems (ICDCS), pages 665-672,
Apr. 2001.

S. Keshav and S. P. Morgan. SMART retransmission: performance with overload and random losses.
In Proc. 16th Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE
INFOCOM ’97), volume 3, pages 1131-1138, 1997.

D. Kim, C.-K. Toh, Y. Choi. TCP-BuS: Improving TCP performance in wireless ad hoc networks.
Journal of Communications and Networks, 3(2):175-186, June 2001.

M. Krunz and H. Hughes. A traffic model for MPEG-coded VBR streams. In ACM SIGMETRICS
Performance Evaluation Review, 23(1):47-55, May 1995.

S.-B. Lee, G.-S. Ahn, and A. Campbell. Improving UDP and TCP performance in mobile ad hoc
networks with INSIGNIA. IEEE Communications Magazine, 39(6):156-165, June 2001.

S.-J. Lee, M. Gerla, and C.-K. Toh. A simulation study of table-driven and on-demand routing proto-
cols for mobile ad hoc networks. IEEE Network, 13(4):48-54, Aug. 1999.

J. Li, C. Blake, D. S. De Couto, H. I. Lee, and R. Morris. Capacity of ad hoc wireless networks.
In Proc. 7th Annual ACM/IEEE International Conf. on Mobile Computing and Networking (ACM
MobiCom ’01), pages, 61-60, July 2001.

J. Liu and S. Singh. ATCP: TCP for mobile ad hoc networks. IEEE Journal on Selected Areas in
Communications, 19(7):1300-1315, July 2001.

154

[46] J. P. Macker, V. D. Park, and M. S. Corson. Mobile and wireless internet services: Putting the pieces
together. IEEE Communications Magazine, 39(6):148-155, June 2001.

[47] D. A. Maltz, J. Broch, and D. B. Johnson. Experiences designing and building a multi-hop wireless
ad hoc network testbed. Technical Report CMU-CS-99-116, School of Computer Science, Carnegie-
Mellon University, Mar. 1999.

[48] M. K. Marina and S. R. Das. Performance of route caching strategies in dynamic source routing.
In Proc. of the International Workshop on Wireless Networks and Mobile Computing (WNMC) in
conjunction with the International Conf. on Distributed Computing Systems (ICDCS), pages 425-432,
Apr. 2001.

[49] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP selective acknowledgment options. RFC
2018, Oct. 1996.

[50] J. Moy. OSPF Version 2. RFC 1583, Mar. 1994.

[51] V. D. Park and M. S. Corson. A highly adaptive distributed routing algorithm for mobile wireless
networks. In Proc. 16th Annual Joint Conference of the IEEE Computer and Communications Societies
(IEEE INFOCOM ’97), volume 3, pages 1405-1413, 1997.

[52] C.E. Perkins, ed., Ad Hoc Networking. Addison-Wesley, Reading, MA, 2001.

[53] C.E.Perkins, E. M. Belding-Royer, and S. R. Das. Ad hoc on-demand distance vector (AODV) routing.
IETF Internet Draft. http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-11.txt, June 2002.

[54] C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance vector (DSDV) for
mobile computers. ACM SIGCOMM Computer Communication Review, 24(4):234-244, Oct. 1994.

[55] J. Postel. User Datagram Protocol. RFC 768, Aug. 1980.
[56] J. Postel. Internet Protocol. RFC 791, Sep. 1981.
[57] J. Postel. Transmission Control Protocol. RFC 793, Sep. 1981.

[58] K. K. Ramakrishnan and R. Jain. A binary feedback scheme for congestion avoidance in computer
networks. ACM Transactions on Computer Systems, 8(2):158-181, May 1990.

[59] T. S. Rappaport, S. Y. Seidel, and K. Takamizawa. Statistical channel impulse response models for
factory and open plan building radio communications system design. IEEE Transactions on Commu-
nications, 39(5):794-807, May 1991.

[60] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). RFC 1771, Mar. 1995.

[61] Rice University Monarch Project. Wireless and mobility extensions to ns-2. Available from
http://www.monarch.cs.rice.edu/cmu-ns.html, Oct. 1999.

[62] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A transport protocol for real-time
applications. RFC 1889, Jan 1996.

[63] A.U. Shankar, C. Alaettinoglu, K. Dussa-Zieger, and |. Matta. Transient and steady-state performance
of routing protocols: Distance-vector versus link-state. Journal of Internetworking: Research and
Experience, 6:59-87, 1995.

155

[64] R. Sivakumar, P. Sinha, and V. Bharghavan. CEDAR: a core-extraction distributed ad hoc routing
algorithm. IEEE Journal on Selected Areas in Communications, 17(8):1454-1465, Aug. 1999.

[65] W.R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley, Reading, MA, 1994.

[66] C.-K. Toh. Long-lived ad hoc routing based on the concept of associativity. IETF Inter-
net Draft. http://www.ietf.org/proceeding/99nov/I-D/draft-ietf-manet-longlived-adhoc-routing-00.txt,
Mar. 1999.

[67] UCLA Parallel Computing Laboratory. Global Mobile Information Systems Simulation Library (Glo-
MoSim). Available from http://pcl.cs.ucla.edu/projects/glomosim.

[68] N. Vaidya, M. Mehta, C. Perkins, and G. Montenegro. Delayed duplicate acknowledgements: a TCP-
unaware approach to improve performance of TCP over wireless. Technical Report 99-003, Dept. of
Computer Science, Texas A&M University, Feb. 1999.

[69] G. T.Wong, M. A. Hiltunen, and R. D. Schlichting. A configurable and extensible transport protocol.
In Proc. 20th Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE
INFOCOM 2001), volume 1, pages 319-328, Mar. 2001.

[70] R. Yavatkar and N. Bhagwat. Improving end-to-end performance of TCP over mobile internetworks.
In Proc. Workshop on Mobile Computing Systems and Applications, pages 146-152, Dec. 1994.

Vita

Thomas Dyer was born in Texas City, Texas on February 5, 1953, the son of Wilson L. Dyer, Jr. and
Jane H. Dyer. After graduating from Texas City High School in January 1971, he attended the University of
Texas at Austin from 1971 to 1973. He completed his undergraduate education at the University of Houston
at Clear Lake, where he obtained a Bachelor of Science degree in Mathematical Sciences in December 1977.
He later pursued graduate studies at the University of Texas at San Antonio and earned a Master of Science
degree in Computer Science at UTSA in May 1987.

Tom and his wife, Susie, reside in Leon Valley, Texas. They have four children and, at last count, four
grandchildren. He has been employed since 1988 as a Senior Systems Analyst in the Department of Genetics

at the Southwest Foundation for Biomedical Research in San Antonio, Texas.

Publications in Computer Science

T. D. Dyer and R. V. Boppana. Analysis of TCP and UDP traffic in MANETS. In Proc. 3rd IEEE Workshop
on Wireless LANs (WLAN ’01), Sep. 2001.

T.D. Dyer and R. V. Boppana. A comparison of TCP performance over three routing protocols for mobile ad
hoc networks. In Proc. 2nd ACM International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc ’01), pages 56-66, Oct. 2001.

T. D. Dyer and R. V. Boppana. Assessing the impact of buffer refresh time and local route repair on rout-
ing protocol performance in mobile ad hoc networks. In Proc. 6th World Multiconference on Systemics,
Cybernetics and Informatics (SCI 2002), volume XV, pages 219-224, July 2002.

T. D. Dyer and R. V. Boppana. Routing HTTP traffic in a mobile ad hoc network. To appear in Military
Communications Conference (MILCOM 2002), Oct. 2002.

T. D. Dyer and R. V. Boppana. On routing Web and multimedia traffic in mobile ad hoc networks. To appear
in Hawaii International Conference on System Sciences (HICSS ’03), Jan. 2003.

