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Abstract

In this paper we propose two price-based job alloca-
tion schemes for computational grids. A grid system tries
to solve problems submitted by various grid users by allo-
cating the jobs to the computing resources governed by dif-
ferent resource owners. The prices charged by these own-
ers are obtained based on a pricing model using a bargain-
ing game theory framework. These prices are then used for
Jjob allocation. We present the grid system model and for-
mulate the two schemes as a constraint minimization prob-
lem and as a non-cooperative game respectively. The ob-
Jjective of these schemes is to minimize the cost for the grid
users. We present algorithms to compute the optimal load
(job) fractions to allocate jobs to the computers. Finally,
the two schemes are compared under simulations with var-
ious system loads and configurations and conclusions are
drawn.

1. Introduction

Grid computing [3] is an important developing com-
puting infrastructure which is a conglomeration of com-
puting resources connected by a network, to form a dis-
tributed system used for solving complex scientific, en-
gineering and commercial problems. This system tries to
solve these problems or applications by allocating the idle
computing resources over a network or the internet com-
monly known as the computational grid. These computa-
tional resources have different owners who can be enabled
by an automated negotiation mechanism by the grid con-
trollers and this can be viewed as a market-oriented grid
[2]. This market-oriented grid is concerned with a particu-
lar type of resource like the computational power or storage
for which these negotiations are made.

% This work was supported in part by National Science Foundation un-
der grant CCR-0312323.

A job or an application usually requires the resources
from more than one owner. So, these grid computing sys-
tems should be able to assign the jobs from various users
to the different owned resources efficiently and utilize the
resources of unused devices, commonly known as the au-
tomated load balancing/job scheduling problem. The pur-
pose of load balancing is to improve the performance of the
grid system through an appropriate distribution of the user’s
application load. Formally, this problem can be stated as:
given a large number of jobs from various grid users, find
the allocation of jobs to computers optimizing a given ob-
jective function (e.g.total cost).

Here, we propose two job allocation schemes for a par-
ticular grid system model based on an existing pricing
model. The two schemes differ in their objective. One
tries to minimize the cost of the grid community (i.e. grid
users) by taking the jobs at all the grid servers into account
whereas the other tries to minimize the cost of the grid users
by taking the jobs at each grid server independently of the
others. We make simulations and comparisons.

The rest of the paper is organized as follows. In section 2
we review the related works. In section 3 we present the sys-
tem model and formulate the problem. In section 4 we de-
scribe our job allocation schemes and derive allocation al-
gorithms. In section 5 the performance of the schemes are
compared. In section 6 we draw conclusions. In section 7
we provide proofs for the stated theorems.

2. Related work
2.1. Pricing model

The grid system is a collection of grid servers and com-
puters (i.e. resources). These servers try to find the re-
sources on which the jobs from various users can be exe-
cuted. The negotiation between these two entities is formu-
lated as an incomplete information alternating-offer non-
cooperative bargaining game in ([9][4][11]) with the grid
servers playing on behalf of the grid users. Similar eco-
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nomic models based on game theory are proposed in [1].
The two players (servers and computers) have no idea of
each other’s reserved valuations [9], i.e. the maximum of-
fered price for the server (acting as the buyer of resource)
and the minimum expected price for the computers (acting
as the seller of the resource). The server has to play an inde-
pendent game with each computer associated with it to form
the price per unit resource vector, p;. So, in a system with
m servers and n computers at time ¢, we have m X n bar-
gaining games as shown in Figure 1.

Figure 1. Bargaining game mapping between
the grid servers and computers

Both the players try to maximize their utility functions
and so the game reduces to the case of dividing the differ-
ence of maximum buying price offered by the grid commu-
nity and minimum selling price expected by the computers.

The bargaining protocol is as follows: One of the play-
ers starts the game. If the server starts the game, it proposes
an offer which will be much less than its own reserved val-
uation. If the offered price > the computer’s standard price
with highest expected surplus, then the computer accepts
the offer. Else, it makes a counter offer. If this counter of-
fer < the server’s standard price with the highest expected
surplus, it accepts. Else the server counter offers again. This
procedure continues until an agreement is reached.

At each step, the expected surplus of each player is
based on the probability of acceptance, breakdown or
counter-offer of the other player. In general, they are
given by: Expected Utility = E[Surplus] = (reserved val-
uation of x - standard price of x)Xxprobability(standard
price) [11], where z stands for the grid server or the
computer, probability(standardprice) is the probabil-
ity that the standard price will be accepted by the other
player as predicted by itself and the standard price rep-
resents the different offered prices used by the players to
compute their expected surplus. Also, at each step, if an of-
fer is rejected, then the players will update (i.e. reduce)
the probability(standardprice) which monotonically de-
creases as the alternatives come closer to their reserved

valuations where it is more likely to be accepted by the op-
ponent [8].

We simulated this pricing model based on the assump-
tions given in [4]. Figure’s 2 and 3 show the expected sur-
plus (profit) earned by the server and the computer against
their various offered prices with time. As the time increases,
the expected surplus gradually decreases, which makes both
the players offer prices which are much closer to their re-
served valuation and which helps the game to converge.

Grid Server's Expected Surplus

06 s s s s s s s s !
) 01 02 03 04 05 06 07 08 09 1

Grid Server's Offered Price

Figure 2. Expected surplus of the Grid server
vs Offered prices

Computer's Expected Surplus
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Figure 3. Expected surplus of the Computer
vs Offered prices

2.2. Job allocation schemes

2.2.1. The global optimal job allocation scheme we pro-
pose in this paper is similar to the one for multi-class model
described in [6]. But, in our model, we assume that the jobs
assigned to a computer by a grid server are processed com-
pletely by itself and are not transferred any further. Based on
this, we formulate the problem as a cost minimization prob-
lem and provide a solution. Similar work was done in [4].
They considered a grid system model with a single server
which accepts each user’s jobs and assigns them (taking
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the pricing into account) to the computers. This is a single-
server many-computer scheduling algorithm.

2.2.2. The other scheme is an extension of the NASH dis-
tributed load balancing scheme [5] to include pricing where
each grid server tries to optimize its objective function (min-
imizing the cost) independently of the others and they all
eventually reach an equilibrium. In general, the jobs from a
grid user will be dealt by a local server and so this scheme
is favorable to the individual users but not to the entire
system. This situation can be viewed as a non-cooperative
game among the servers. The equilibrium is called Nash
equilibrium and is obtained by a distributed noncoopera-
tive policy.

3. System model

We consider a grid system model with many servers and
computers as shown in Figure 4. The system has m grid
servers and n computers. The grid controller acting on be-
half of the grid community (which consists of the users) as-
signs jobs to the grid servers from different users with a to-
tal job arrival rate of ®. Let the job arrival rate at each server
be ¢;. Hence, ® = ET=1 ¢;. Each computer is modeled as
an M/M/1 queuing system (i.e. Poisson arrivals and expo-
nentially distributed processing times) [7] and is character-
ized by its average processing rate u;, ¢ = 1,...,n. The
total job arrival rate & must be less than the aggregate pro-
cessing rate of the system (i.e. ® < Y. | p;). Each server
J keeps track of the price per unit resource pj; (the bargain-
ing game is played prior to the job allocation) and the pro-
cessing rate p; of the i*® computer. Since each grid user
will have a different reserved valuation, the p;; depends on
the user on whose behalf the server j plays the game with
the i*" computer and so the server has to maintain separate
price vectors for each grid user.

Job

Figure 4. Grid System Model

Based on the scheme, we find the load fractions (sj;)
of each server j (j = 1,...,m) that are assigned to com-
puteri (31, sj; =1land0 < s;; <1,i=1,...,n)such
that the expected price of all the jobs in the system or the ex-
pected price of the local jobs of the servers is minimized. In
the following we present the notations and define the prob-
lem.

Let s;; be the fraction of workload (jobs) that server j
sends to computer i. Thus, s; = (s;j1,$8j2,.-.,8;n) de-
notes the workload fractions of server j and the vector
s = (s1,82,---,S,) denotes the load fractions of all the
servers.

Since each computer is modeled as an M/M/1 queuing
system, the expected response time at computer ¢ is given
by:

1
pi = 3255 8jid;

Thus the overall expected cost of server j is given by:

Fi(s) = (1

n

- kipjisji
Dj(s) = ) kipjisjiFi(s) = EAAE )
i z=Z1 sesiFile) Z:ZI Bi = D pey Ski®k

and the overall expected cost of the system (i.e. of all the
servers) is given by:

D@z%Z%@@ 3)
j=1

which is equivalent to

1 e~ kipjidisji
D(s) = — 4
(®) J Z Z i = Do pey Ski®k @

j=1i=1

subject to the constraints:

5 >0, i=1,...,n, j=1,....,m (5)
n
dosii=1, j=1,...,m (6)
i=1
m
Zsji¢j<ﬂiv i=1,...,n @)
j=1

where k; is assumed to be a constant which maps the ex-
ecution time to the amount of resources consumed at node ¢
and pj; is the agreed price as a result of the bargaining game
between server j and computer <.

Based on the above we propose two job alloca-
tion schemes; GOSP which try to minimize the cost
of all the jobs in the system (i.e. jobs at all the servers)
and NASHP which try to minimize the cost of all the
jobs at each server independently of the others. We de-
scribe these two schemes in the next section.
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4. Price based job allocation schemes
4.1. Global Optimal Scheme with Pricing (GOSP)

The load fractions (s) are obtained by solving the non-
linear optimization problem D(s) (4) which gives the opti-
mum expected cost of the system. To find the solution, the
scheme finds the load fractions of each server by taking into
account the load on each computer due to the other server
allocations. Let p] = i — >yl psj Skidk be the avail-
able processing rate at computer ¢ as seen by server j.

Theorem 1: Assuming that computers are ordered in de-
creasing order of their available processing rates (u{ >

,ug > ... > pi), the load fractions for server j are given
by:

CJ
=4 W ("Z Vk”’“’“z \/ﬁ)’f l<i<e
0 if ¢i<i<m
(3)
where ¢; is the minimum index that satisfies the inequality:

VkeiPic; e, (s i — 65)
iy VERDjk bk
Proof: In section 7 (Appendix).

Based on the above theorem we derived the following al-
gorithm for determining server j’s best load fractions.

ph, < ©)

BEST-FRACTIONS (4! , ..., uid,, 65,
pjl;---;pjn, kl,...,kn)
Input: Available processing rates:
[ B3 - e
Total arrival rate: ¢;
The price per unit resource vector:

DPj1,Pj2, - - - Pjn
The constants vector: k1, ko, ... k,
Output: Load fractions: s;1, Sj2, . .. Sjn;

1. Sort the computers in decreasing order of

w)
1 > 13 > ... 2 ”7" ;
\/Ihkﬂ)jl \/szzpn UnknDjn
Bi—9;
2.t 21 1 2

Yo\ mipjiki
J
3. while (¢t > ——£2— ) do

UnknDjn
Sjn 0
n&<n-— 1
é
t 71
L V#ipjiki

4.fori = 1,...,nd0
8ji ¢ 5 <Mi —t ,uipjiki)

The following theorem proves the correctness of this al-
gorithm.
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Theorem 2: The load fractions {s;1, 82, - ..,5n} com-
puted by the BEST-FRACTIONS algorithm solves the op-
timization problem D(s) and are the optimal fractions for
server J.

Proof: In section 7 (Appendix).

To compute the optimal load fractions of all the servers,
there should be some communication between them in or-
der to obtain the load information from the other servers and
compute the £]’s

Based on the BEST-FRACTIONS algorithm presented
above, we devise the following iterative algorithm where
each server updates from time to time its load fractions
taking into account the existing load fractions of the other
servers in a round-robin fashion.

We use the following notations:

7 - the server number;
[ - the iteration number;

sg-l) - the load fractions of server j computed at itera-
tion [;

Dy) - server j’s expected price at iteration [;

€ - a properly chosen acceptance tolerance;

Send(y, (p, ¢, r)) - send the message (p, g, r) to server
Js

Recv(y, (p, g, 1)) - receive the message (p, g, r) from
server j;

(where p is a real number, and ¢, r are integer num-
bers).

GOSP job allocation algorithm:

Userj,(y=1,...,
1. Initialization:
Sgo) +~ 0;

D;O) + 0;
1+ 0;
norm + 1;
sum + 0;
tag + CONTINUE;
left =[(j — 2)modm] + 1;
right = [jmodm] + 1;
2. while (1) do
if(j = 1) {server 1}
if (I #0)
Recv(left, (norm, 1, tag));
if (norm < ¢)
Send(right, (norm, I, STOP));
exit;
sum + 0;
l+<1+1;
else {the other servers}
Recv(left, (sum, [, tag));
if (tag = STOP)

m) executes:

TEEE .2
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if (j # m)
Send(right, (sum, [, STOP));
exit;
fori=1,...,ndo
Obtain p{ by inspecting the run queue
of each computer

(RN TED S Skifk);
s\ < BEST-FRACTIONS(u, ..., (i, ;.
Pj1,---,Pjn> kl:- . -akn);

Compute Dg.l) ;

sum < sum + |D§-l71) - D;l) l;

Send(right, (sum, |, CONTINUE));
endwhile

This iterative algorithm can be implemented on the dis-
tributed system and can be restarted periodically or when
the system parameters are changed. Once the accepted tol-
erance is reached, the servers will continue to use the
same load fractions and the system operates at the optimal
cost. The running time of each iteration is O(mnlogn +
mnlog(1/e)). This Global Optimal Scheme with Pricing
(GOSP) minimizes the expected cost over all the jobs exe-
cuted by the Grid system.

4.2. Nash Scheme with Pricing (NASH P)

We consider the N AS H algorithm for load balancing in
distributed systems [5] and modify it to include pricing. In
this scheme each server tries to minimize the total cost of
its jobs independently of the others. The load fractions are
obtained by formulating the problem as a non-cooperative
game among the servers. The goal of server j is to find a fea-
sible job allocation strategy s; such that D;(s) (2) is mini-
mized.

The best allocation strategy of server 5 which is the so-
lution of (2) is given by the following theorem.

Theorem 3: Assuming that computers are ordered in
decreasing order of their available processing rates (u] >
(> ... > pl), the solution s; of the optimization prob-
lem Dj(s) is given by:

E “k ¢J . .
— Vkipjipl =1k T )zf 1<i<g
{3 (Vi St J
0 if ¢g<i<n

(10)
where ¢; is the minimum index that satisfies the inequality:

VEe;Pie; (5, 11 — ¢;)

Doy \ krDjk i,

pt; < (11)

Proof: Similar to that of GOSP.

Based on the above theorem we have the BEST-REPLY
algorithm similar to that of the BEST-FRACTIONS for de-
termining server j’s best strategy. The computation of Nash
equilibrium may require some communication between the
servers. Each server updates from time to time its job alloca-
tion strategy by computing the best response against the ex-
isting job allocation strategies of the other servers. Based on
the BEST-REPLY algorithm we devised a greedy best reply
algorithm for computing the Nash equilibrium for the non-
cooperative job allocation scheme which is similar to the
GOSP job allocation algorithm by replacing the procedure
call to BEST-FRACTIONS by BEST-REPLY.

5. Experimental results
5.1. Simulation environment

We developed a simulation platform to evaluate the per-
formance of our GOSP and N ASH P schemes. The main
performance metrics used in our simulations are the ex-
pected response time and the fairness index. The fairness
index [5] (defined from the servers’ perspective),

o Gl
my i, CF

is used to quantify the fairness of job allocation schemes.
Here the parameter C is the vector C = (C1,Ca,...,Ch)
where C; is the expected cost of server j’s jobs. This in-
dex is a measure of the ‘equality’ of servers’ total expected
cost. If all the servers have the same total expected price
then I = 1 and the system is 100% fair to all servers and it is
cost-balanced. If the differences on C; increase, I decreases
and the job allocation scheme favors only some servers. If
the cost is proportional to the load, then cost-balanced is
also load-balanced.

1(C) = (12)

5.2. Performance evaluation

We evaluated the schemes presented above under vari-
ous system loads and configurations. In the following we
present and discuss the simulation results.

5.2.1. Effect of system utilization To study the effect of
system utilization we simulated a heterogeneous system
consisting of 32 computers with eight different processing
rates. This system is shared by 20 servers. The price vec-
tor p; for each server is based on the alternating offer bar-
gaining game previously described. In Table 1, we present
the system configuration. The first row contains the relative
processing rates of each of the eight computer types. Here,
the relative processing rate for computer C; is defined as the
ratio of the processing rate of C; to the processing rate of
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Relative p; 1 23|45 ]|7]8 10

#computers | 7 | 6 | 5 | 4 | 3 | 3 | 2 2

11; (jobs/sec) | 10 | 20 | 30 | 40 | 50 | 70 | 80 | 100
k; 123456 7] 8

Table 1. System configuration.

the slowest computer in the system. The second row con-
tains the number of computers in the system corresponding
to each computer type. The third row shows the process-
ing rate of each computer type in the system. The last row
shows the values for k;, the constant which maps the execu-
tion time at the computer ¢ to the amount of resources con-
sumed at ¢ [4].

For each experiment the total job arrival rate in the sys-
tem ® is determined by the system utilization p and the ag-
gregate processing rate of the system. System utilization (p)
is defined as the ratio of the total arrival rate to the aggre-
gate processing rate of the system:

@
E?:llu”i

We choose fixed values for the system utilization and de-
termined the total job arrival rate ®.

13)

Price

10 20 30 40 50 60 70 80 90
System Utilization(%)

Figure 5. System Utilization vs Expected
Price

Figure 5 shows the plots for total price that the grid
user has to pay as a function of system utilization based
on GOSP. The price increases with system utilization be-
cause the higher the p, the more the load on the computers
and so the higher the expected response time and the cost.
Three curves are shown corresponding to random, strictly
decreasing and strictly increasing price vector (the comput-
ers are initially numbered in decreasing order of their pro-
cessing rates). The random price vector is the one obtained
by the pricing strategy described above and the correspond-
ing curve lies between that for the ascending and the de-
scending price vector cases. This is because, if the faster

computers charge less (in the case of price vector in ascend-
ing order), then they will get the bulk of the work resulting
in lower overall response time and subsequently lower to-
tal price for the grid user. Similarly, if the faster devices
charge more (in the case of price vector in descending or-
der), then they will get fewer jobs resulting in greater over-
all response time and subsequently greater price for the grid
user.

In Figure’s 6 and 7, we present the expected response
time of the system and the fairness index for different val-
ues of system utilization (ranging from 10% to 90%).

Expected Response Time

10 20 30 40 50 60 70 80 90
System Utilization(%)

Figure 6. System Utilization vs Expected Re-
sponse Time

Faimess Index

10 20 30 40 50 60 70 80 90
System Utilization(%)

Figure 7. System Utilization vs Fairness In-
dex

It can be seen that for different system loads, the GOS P
scheme which minimizes the cost of the entire system per-
forms better than the N ASH P scheme where each server
minimizes its own cost. But, GOS P whose objective is to
reduce the overall cost of the grid community (users) is un-
fair (fairness index falls to as low as 0.68 for high system
loads) whereas NASHP has a fairness index of almost
1 for any system load, which means that it is fair to each
server and thus to each user.
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5.2.2. Effect of heterogeneity In a grid, heterogeneity
usually consists of: processor speed, memory and I/O. A
simple way to characterize system heterogeneity is to use
the processor speed. Furthermore, it is reasonable to assume
that a computer with high speed processor will have match-
ing resources (memory and I/O). One of the common mea-
sures of heterogeneity is the speed skewness [10] which is
defined as the ratio of maximum processing rate to mini-
mum processing rate of the grid computers.

In this section, we investigate the effectiveness of load
balancing schemes by varying the speed skewness. We sim-
ulate a system of 32 heterogeneous computers: 4 fast and 28
slow. The slow computers have a relative processing rate of
1 and we varied the relative processing rate of the fast com-
puters from 1 (which correspond to a homogeneous system)
to 20 (which correspond to a highly heterogeneous system).
The system utilization was kept constant p = 60%.

Price

2 4 6 8 10 12 14 16 18 20
Max Speed/Min Speed

Figure 8. Heterogeneity vs Expected Price

Figure 8 shows the plots for total price that the grid user
has to pay with increasing speed skewness for three differ-
ent price vectors based on GOSP. The expected price for
the random price vector lies between that for the ascend-
ing and descending price vectors for similar reasons as dis-
cussed before. Figure 9 plots the overall expected response
time with increasing speed skewness. The total response
time decreases for both the schemes with an increase in the
relative processing speed of the fast computers and GOS P
performs better than the NASH P at all times and at high
skewness, both perform equally well.

6. Conclusion

In this paper we proposed two job allocation schemes
based on pricing for computational grids. These schemes
are formulated as a constraint minimization problem and
as a non-cooperative game respectively. The algorithms to
compute the optimal load (job) fractions for the grid servers
are devised. The first scheme tries to minimize the cost of
the entire grid system and so is advantageous when the sys-
tem optimum is required. But it is not fair to the servers and

Expected Response Time

L L L L
2 4 6 8 10 12 14 16 18 20
Max Speed/Min Speed

0.05 L L L L L

Figure 9. Heterogeneity vs Expected Re-
sponse Time

so to the users. The second scheme minimizes the cost for
each server. This is fair to the servers and so to the users.

7. Appendix

In this section we present the proofs of the results used
in the paper.

7.1. Proof of Theorem 1

We begin with the observation that the stability condi-
tion (7) is always satisfied because of the fact that the to-
tal arrival rate (®) does not exceed the total processing rate
of the distributed system. Thus we consider D(s) problem
with only two restrictions, (5) and (6).

We first show that D(s) is a convex function in s and
that the set of feasible solutions defined by the constraints
(5) and (6) is convex.

From (4) it can be easily shown that a[;(f) > 0 and

Os;
2
g(f_()sg > 0 for4 = 1,...,n. This means that the Hes-

sian of D(s) is positive which implies that D(s) is a convex
function of the load fractions s. The constraints are all lin-
ear and they define a convex polyhedron.

Thus, D(s) involves minimizing a convex function over
a convex feasible region and the first order Kuhn-Tucker
conditions are necessary and sufficient for optimality.

Leta > 0,7 >0,i=1,...,n,7 =1,...,m denote
the Lagrange multipliers. The Lagrangian is:

L(S11y- -y SmnyQMly -+ s Nmn) = (14)
—of Sji —m)—
]z:‘: ; (i — Do pey Skidr) ; ; I
(15)
m n
ZaniSji (16)
j=1i=1
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The Kuhn-Tucker conditions imply that sj;,
3 = 1,...,m, ¢ = 1,...,n is the optimal solution
to D(s) if and only if there exists « > 0, n; > 0,

j=1,...,m,i=1,...,nsuch that:
oL
=0 17
5o 17
OL
— =0 18
% (18)

NjiSji = 0,77]',' > O,Sji >0,5=1,..,.m;i=1,..,n (19)
These conditions become:

kipji @ s

- —OL—’O]',':O, j:l,..,m;z’:l,..,n
(i — 55i5)°
(20)
n
dosi=1, j=1,...m 1)
i=1
nyisji =0,m5: > 0,85 20,5 =1,..,m;i=1,..,n (22)
These are equivalent to:
Eimss b s
o= ;pjl(ﬁ],u/’l z,l-fsji>0;15j§m;1§i§n
B(u; — s5i¢;)
(23)

< k'z"pjiqu///z'
T O — s5i05)?

n
Z sj; = 1,
=1
’ 25)

Claim: Obviously, a computer with a higher average pro-
cessing rate should have a higher fraction of jobs assigned
to it. Under the assumptlon on the ordering of computers
(,u1 > H% > ... > ul), we have the following order on
load fractions for each server: s;; > sj2 > ... > sj,. This
implies that may exist situations in which the slow comput-
ers have no jobs assigned to them by the servers. This means
that there exist an index ¢; (1 < ¢; < n) so that s;; = 0 for
t =¢j,...,n for each server.

From (23) and based on the above claims we can obtain
by summation the following equation for each server:

Jif 857 =0;1<j<m;l<i<n
(24)

8520, j=1,....m, i=1,...,n

cj—1 cj—1 cj—1

Z Vkipjidipmi = VO@(Z pwl - Z sji¢;)  (26)
i=1 i=1 i=1
Using (24) the above equation becomes:

1

z \/kipji¢jui <V zpjzdhlh 27
=1 i

25:1 1} _Ezc 1 311¢J 3

This is equivalent to:

Vad =

MCJ Z Vkipjidim: < \/kipjidiui Zﬂz ¢;) (28)

Thus, the index ¢; is the minimum index that satisfies the
above equation and the result follows.

7.2. Proof of Theorem 2

The while loop in step 3 finds the minimum index c; for
kipjini (D0 ml—o;)

Z;J=1 kkPjk
,n.In step 4, sj; is set equal to

which < . In the same loop, s;;

are set to zero for i = c],

(:uz V zp]zlu/zz W) fori = 1,.. -, C5 —

1 These are in accordance with Theorem 1. Thus, the allo-
cation {s;1, ..., 8j, } computed by the BEST-FRACTIONS
algorithm is the optimal solution for each server.
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