
A Hierarchical Distributed Loop Self-Scheduling Scheme for Cloud Systems

Yiming Han and Anthony T. Chronopoulos

Department of Computer Science
University of Texas at San Antonio

San Antonio, TX, USA
Email: yhan@cs.utsa.edu, atc@cs.utsa.edu

Abstract—Cloud systems have demonstrated the powerful
computation and storage capability in many scientific appli-
cations. In this paper, we propose a hierarchical distributed
loop self-scheduling scheme to achieve good load balancing by
applying weighted self-scheduling scheme on a heterogeneous
cloud system. This scheme also considers the distribution of the
output data, which can help reduce communication overhead.
We evaluated the scheme with two scientific applications:
Matrix Multiplication and Quick Sort. The results shows that
our schemes achieve better load balancing and better overall
performance than standard loop self-scheduling scheme.

Keywords-Self-Scheduling; Distributed; Hierarchical; Cloud
System.

I. INTRODUCTION

Scientific loops are usually computation-intensive which

may take a long execution time. Distributed systems, such

as cluster, grid and cloud, are widely used in many scientific

loops. Thus, scientific loop paralization, which schedules

and assigns work among processors/workers, becomes an

important issue. One of the difficult problems is load bal-

ancing. Efficient loop scheduling schemes can improve the

utilization of resources and minimize the total execution

time.

Cloud computing is emerging as a powerful technology to

meet the requirements for high-performance computing and

massive storage. It provides scalable, flexible, reliable and

on demand computing and storage resources over a network.

Many scientific computation-intensive and data-intensive ap-

plications are accomplished on cloud systems [1] [2]. a cloud

system could be considered as a dynamic heterogeneous

distributed system. A cloud system may also provide a ho-

mogeneous computing environment at the start. However, it

may be upgraded and replaced to exhibit more heterogeneity

[3]. The availability and performance of virtual machines

can change over time. Also a cloud system is transparent to

cloud users, which means cloud users still perceive it as a

homogeneous environment. Thus, it is likely to create load

imbalance if we ignore the heterogeneity. Previous research

reported some schemes on a heterogeneous cluster and grid

systems. Also, [4] tested a distributed scheme for cloud

systems.

There are some commercial cloud providers, such as

Amazon EC2, Microsoft Azure, Salesforce Service Cloud

and Google Cloud. Some open source cloud projects for re-

search and development also exist, for example, OpenStack,

Eucalyptus, CloudStack and Ganeti [5] and references there

in. There is also much ongoing research for cloud systems.

In [6], a provisioning technique that automatically adapts

to workload changes related to applications with Quality of

Services (QoS) in large, autonomous, and highly dynamic

environments is proposed. [7] extends Grid workflow mid-

dleware to compute clouds in order to speed up executions

of scientific workflows. A hierarchical scheduling algorithm

for applications, to minimize the energy consumption of

both servers and network devices is proposed in [8]. The

problem of provisioning physical servers to a sequence of

jobs, and reducing the total energy consumption is studied

in [9]. In [10], a Master-Worker model is used for a case

study of an application of a parallel simulation optimization

deployed on a private Cloud. [11] reported that the effect of

some critical parameters (allocation percentages, real-time

scheduling decisions and co-placement) on the performance

of virtual machines. The performance of cloud computing

services for scientific computing workloads is studied in [12]

Cloud computing platforms provide computing service

to users by virtualization technology [13] [14]. For high

performance computing applications, we can use cloud to

virtualize clusters on cloud systems. These virtual machines

can share the same physical hardware or different physi-

cal hardware with various system load and user load and

cloud system use a fair-share balancing algorithm that gives

equal time to each virtual machine. However, because of

limited resources, the virtualized cluster is not private and

the resources are shared by many users, which means the

virtualized cluster may act as a heterogeneous computing

environment at running time. Thus, the heterogeneity should

be taken into account to improve resource utilization and

reduce load imbalance. MapReduce [15] is a general con-

current programming framework for scheduling job-tasks on

cloud systems. Previous research [16] [17] reported that the

performance on virtual machines is lower than the physical

system.

The rest of the paper is organized as follows. In section II,

we describe the hierarchical distributed schemes. In section

2013 IEEE 12th International Symposium on Network Computing and Applications

978-0-7695-5043-5/13 $26.00 © 2013 IEEE

DOI 10.1109/NCA.2013.9

7

Figure 1. Hierarchical Architecture

III, experiments and results are presented. In section IV,

conclusions are drawn.

II. HIERARCHICAL DISTRIBUTED SCHEMES

We consider a logical hierarchical architecture as a good

model for scalable systems and we propose a new hierarchi-

cal approach for addressing the bottleneck problems in the

Master-Worker schemes.
Instead of making one master process responsible for

all the workload distribution, several master processes are

introduced. Thus, the hierarchical structure contains a lower

level, consisting of worker processes, and several superior

levels, of master processes. On top, the hierarchy has an

overall supermaster. The workers’ role is to perform the

computations following a Master-Worker self-scheduling

method for the problem that is to be solved. This scheme is

called a Hierarchical Distributed Scheme.
Figure 1 shows this design for two levels of master

processes, one supermaster and two master nodes. The task

scheduler resides in the supermaster and it uses distributed

scheduling schemes (DTSS/DFSS/DGSS) [4] [18] to com-

pute small scheduled chunks for each master node and send

to master nodes’ Task Pools. When the Task Pool of a master

node is empty, it asks for more work (from the supermaster)

in order to fill the Task Pool until there is no more work.

The master node accepts a worker request, places it into the

request queue and gets a scheduled chunk from the Task Pool

and serves the top request from Request Queue. Also, the

master node is in charge of gathering the computed results

from workers. There are multiple Request Queues and Result

Collectors distributed in different master nodes, which can

share the responsibilities.

III. EVALUATION

A. Cloud Environment
We use FlexCloud of Institute for Cyber Security(ICS)

at University of Texas at San Antonio. The ICS FlexCloud

is one of the first dedicated Cloud Computing academic

research environments. It offers significant capacity and

similar design features found in Cloud Computing providers,

including robust compute capability and elastic infrastruc-

ture design.

B. Experimental Setup

Two applications, Quick Sort and Matrix Multiplication

are used to evaluate the overall performance. Quick Sort

has 20K lines of random arrays and the size of Matrix

Multiplication is 15K * 15K.

We use 5 different physical machines are on FlexCloud.

We created 16 VMs on each physical machine sharing the

same LAN. Each VM corresponds to a separate core. The

purpose is showing the network heterogeneity in the exper-

iment. The communication overhead between VMs in the

same physical machine (intra-node shared memory commu-

nication) is lower than in different physical machines (inter-

node distributed memory communication). For 64 workers

using 4 masters hierarchical distributed scheme, each master

has 16 workers. Master VM and its 15 worker VMs are in

the same physical machine and the other worker VM is in

another physical machine. The most of work distribution

communication and the results collection communication

is intra-node shared memory communication, instead of

communication across nodes. The result collection commu-

nication work is distributed in masters, instead of in a single

master node by standard scheme. Each VM is loaded with

Ubuntu Linux 12.04 image. Stress [19], a work generator,

is used to create a heterogeneous computing environment.

Stress is a deliberately simple workload generator. Stress

was developed by University of Oklahoma. It imposes a

configurable amount of CPU, memory, I/O, and disk stress

on the system. Each worker can get work proportional to

its available computing power. The supermaster VM resides

on the 6th physical machine from the masters and workers.

This machine has a large memory and we used no ’Stress’

load because we want to minimize the scheduling overhead.

C. Results

The following loop scheduling schemes are implemented.

distributed schemes: DTSS, DFSS, DGSS; hierarchical

distributed schemes: HDTSS, HDFSS, HDGSS. All the

schemes are implemented by C++ and MPI. All timings are

in seconds.

Figure 2 and Figure 3 present the execution times of non-

hierarchical distributed schemes (DTSS, DFSS, DGSS) and

hierarchical distributed schemes(HDTSS, HDFSS, HDGSS)

on 20K Quick Sort and 15K * 15K Matrix Multiplica-

tion. It can be observed that the hierarchical distributed

schemes show substantial performance improvement over

non-hierarchical distributed schemes. For TSS scheme,

HDTSS(2 masters) and HDTSS(4 masters) are 18% and 33%

faster(in average) than DTSS respectively in Quick Sort. And

HDTSS(2 masters) and HDTSS(4 masters) are 24% and 38%

faster than DTSS respectively in Matrix Multiplication. For

FSS scheme Quick Sort, HDFSS(2 masters) and HDFSS(4

masters) are 16% and 26% better than DFSS respectively.

And for Matrix Multiplication using DFSS, the improve-

ments are 26% and 43%. For GSS scheme, improvements

8

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

16 32 64
ti
m

e
 (

s
e

c
o

n
d

s
)

processors

DTSS
HDTSS with 2 Masters
HDTSS with 4 Masters

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

16 32 64

ti
m

e
 (

s
e

c
o

n
d

s
)

processors

DFSS
HDFSS with 2 Masters
HDFSS with 4 Masters

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

16 32 64

ti
m

e
 (

s
e

c
o

n
d

s
)

processors

DGSS
HDGSS with 2 Masters
HDGSS with 4 Masters

a. DTSS & HDTSS b. DFSS & HDFSS c. DGSS & HDGSS

Figure 2. The total execution time for Quick Sort using non-hierarchical distributed and hierarchical distributed schemes

 0

 200

 400

 600

 800

 1000

 1200

16 32 64

ti
m

e
 (

s
e

c
o

n
d

s
)

processors

DTSS
HDTSS with 2 Masters
HDTSS with 4 Masters

 0

 200

 400

 600

 800

 1000

 1200

16 32 64

ti
m

e
 (

s
e

c
o

n
d

s
)

processors

DFSS
HDFSS with 2 Masters
HDFSS with 4 Masters

 0

 200

 400

 600

 800

 1000

 1200

16 32 64

ti
m

e
 (

s
e

c
o

n
d

s
)

processors

DGSS
HDGSS with 2 Masters
HDGSS with 4 Masters

a. DTSS & HDTSS b. DFSS & HDFSS c. DGSS & HDGSS

Figure 3. The total execution time for Matrix Multiplication using non-hierarchical distributed and hierarchical distributed schemes

are similar. The reason for this improvement is that hier-

archical distributed schemes distribute work into multiple

master nodes, which decentralizes the work distribution and

the collection of the results. Thus, with more master nodes,

there is better work load balancing.)

We next analyse the total execution time in terms of the

master time, the communication time and overhead time.

Let Tmaster denote the total execution time of a master,

which means that the workers managed by this master

have finished all the work assigned to them and the results

have been returned to the master. We note that, Texec =
max{Tmaster1 , Tmaster2 , . . . , Tmasterm}+T

′
, where Texec

denotes the total execution time (measured by the supermas-

ter) for m masters hierarchical distributed scheme and where

T
′

is the time for scheduling, work distribution, start up and

termination overheads in the supermaster. Thus, Tmaster rep-

resents most of the work execution time in the experiment,

because the scheduling overhead in the supermsater is low.

Thus, the load balancing depends on both computation in

workers and the communication time to return the results

to the masters. We use the maximum master times differ-

ence, Tdiff = max{Tmaster1 , Tmaster2 , . . . , Tmasterm} −
min{Tmaster1 , Tmaster2 , . . . , Tmasterm}, to measure the

work load balancing in the experiment. If Tdiff is small,

the major work is distributed evenly and the utilization is

better. Figure 4 and Figure 5 present the Tdiff for non-

hierarchical distributed schemes (DTSS, DFSS, DGSS) and

hierarchical distributed schemes(HDTSS, HDFSS, HDGSS).

For non-hierarchical distributed schemes, Tdiff is the same

as Tmaster. It can be observed that the differences in the

case of non-hierarchical distributed schemes are quite sub-

stantial. The work is centralized using the single master and

the communication and synchronization overhead is high.

On the other hand, in the case of hierarchical distributed

schemes, the results collection is distributed among several

masters. Thus Tdiff is small and the work load is more

balanced.

IV. CONCLUSION

In this paper, we studied hierarchical distributed loop

scheduling schemes and compared them to standard schemes

by implementing in a cloud computing environment. The

hierarchical distributed loop scheduling schemes reduce the

communication time for returning results and the work dis-

tribution time in the cloud system environment. MapReduce

is a programming model which offers an alternative to MPI

implementation of many data parallel applications. In the

future, we plan to implement our schemes in MapReduce

and compare to MPI for scientific loops.

ACKNOWLEDGEMENT

We gratefully acknowledge the following: (i) support by

NSF grant (HRD-0932339) to the University of Texas at San

Antonio; and (ii) time grants to access the facilities of Insti-

tute for Cyber Security(ICS) of University of Texas at San

Antonio and FutureGrid at Indiana University, Bloomington.

REFERENCES

[1] K. Keahey, “Cloud computing for science,” Proceeding of
21st Scientific and Statistical Database Management Confer-
ence, vol. 5566, pp. 478–478, 2009.

[2] H. Qian, H. Zu, C. Cao, and Q. Wang, “Css: Facilitate the
cloud service selection in iaas platforms,” Proceeding of IEEE
International Conference on Collaboration Technologies and
Systems, 2013.

[3] S. Yeo and H.-H. Lee, “Using mathematical modeling in
provisioning a heterogeneous cloud computing environment,”
Computer, vol. 44, pp. 55–62, 2011.

9

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

16 32 64
ti
m

e
 (

s
e

c
o

n
d

s
)

processors

DTSS
HDTSS with 2 Masters
HDTSS with 4 Masters

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

16 32 64

ti
m

e
 (

s
e

c
o

n
d

s
)

processors

DFSS
HDFSS with 2 Masters
HDFSS with 4 Masters

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

16 32 64

ti
m

e
 (

s
e

c
o

n
d

s
)

processors

DGSS
HDGSS with 2 Masters
HDGSS with 4 Masters

a. DTSS & HDTSS b. DFSS & HDFSS c. DGSS & HDGSS

Figure 4. The maximum difference in masters execution time for Quick Sort using non-hierarchical distributed and hierarchical distributed schemes

 0

 200

 400

 600

 800

 1000

 1200

16 32 64

ti
m

e
 (

s
e

c
o

n
d

s
)

processors

DTSS
HDTSS with 2 Masters
HDTSS with 4 Masters

 0

 200

 400

 600

 800

 1000

 1200

16 32 64

ti
m

e
 (

s
e

c
o

n
d

s
)

processors

DFSS
HDFSS with 2 Masters
HDFSS with 4 Masters

 0

 200

 400

 600

 800

 1000

 1200

16 32 64

ti
m

e
 (

s
e

c
o

n
d

s
)

processors

DGSS
HDGSS with 2 Masters
HDGSS with 4 Masters

a. DTSS & HDTSS b. DFSS & HDFSS c. DGSS & HDGSS

Figure 5. The maximum difference in masters execution time for Matrix Multiplication using non-hierarchical distributed and hierarchical distributed
schemes

[4] Y. Han and A. Chronopoulos, “Distributed loop scheduling
schemes for cloud systems,” 23th IEEE International Sympo-
sium on Parallel and Distributed Processing, Workshops and
Phd Forum, IPDPSW’13, pp. 20–26, 2013.

[5] K. Hwang, J. Dongarra, and G. C. Fox, “Distributed and cloud
computing: From parallel processing to the internet of things,”
Morgan Kaufmann, 2011.

[6] R. Calheiros, R. Ranjan, and R. Buyya, “Virtual machine
provisioning based on analytical performance and Qos in
cloud computing environments,” International Conference on
Parallel Processing, ICPP’11, pp. 295–304, 2011.

[7] S. Ostermann, R. Prodan, and T. Fahringer, “Extending grids
with cloud resource management for scientific computing,”
2009 10th IEEE/ACM International Conference on Grid
Computing, pp. 42–49, 2009.

[8] G. Wen, J. Hong, C. Xu, P. Balaji, S. Feng, and P. Jiang,
“Energy-aware hierarchical scheduling of applications in large
scale data centers,” International Conference on Cloud and
Service Computing, CSC’11, pp. 158–165, 2011.

[9] Y.-C. Hsu, P. Liu, and J.-J. Wu, “Job sequence scheduling
for cloud computing,” Proceedings of the 2011 International
Conference on Cloud and Service Computing, pp. 212–219,
2011.

[10] G. V. Mc Evoy, B. Schulze, and E. L. M. Garcia, “Perfor-
mance and deployment evaluation of a parallel application on
a private cloud,” Concurrency and Computation:Practice and
Experience, pp. 2048–2062, 2011.

[11] T. C. Kousiouris, George and T. Varvarigou, “The effects
of scheduling, workload type and consolidation scenarios
on virtual machine performance and their prediction through
optimized artificial neural networks,” Journal of Systems and
Software, pp. 1270–1291, 2011.

[12] A. Iosup, S. Ostermann, M. Yigitbasi, R. Prodan, T. Fahringer,
and D. Epema, “Performance analysis of cloud computing
services for many-tasks scientific computing,” IEEE Trans-
actions on Parallel and Distributed Systems, pp. 931–945,
2011.

[13] J. E. Simons and J. Buell, “Virtualizing high performance
computing,” ACM SIGOPS Operating Systems Review, pp.
136–145, 2010.

[14] H. Qian, C. Cao, L. Liu et al., “Exploring the network
scale-out in virtualized servers,” Proceeding of International
Conference on Soft Computing and Software Engineering,
2013.

[15] W.-C. Shih, S.-S. Tseng, and C.-T. Yang, “Performance study
of parallel programming on cloud computing environments
using MapReduce,” International Conference on Information
Science and Applications, ICISA’10, pp. 1–8, 2010.

[16] J. Ekanayake and G. Fox, “High performance parallel com-
puting with clouds and cloud technologies,” Proceedings of
the first International Conference on Cloud Computing, pp.
20–38, 2010.

[17] C. Evangelinos and C. N. Hill, “Cloud Computing for parallel
Scientific HPC Applications: Feasibility of Running Coupled
Atmosphere-Ocean Climate Models on Amazon’s EC2,” 5th
International Conference on Computability and Complexity
in Analysis, pp. 159–168, 2008.

[18] Y. Han and A. Chronopoulos, “Scalable loop self-scheduling
schemes implemented on large-scale clusters,” 23th IEEE
International Symposium on Parallel and Distributed Pro-
cessing, Workshops and Phd Forum, IPDPSW’13, 2013.

[19] Stress, http://www.hecticgeek.com/2012/11/stress-test-your-
ubuntu-computer-with-stress/.

10

