
Ceph Distributed File System Benchmarks on an

Openstack Cloud

X. Zhang(zxuuzx@gmail.com), S. Gaddam(gcg047@my.utsa.edu), A. T. Chronopoulos(antony.tc@gmail.com)

Department of Computer Science

University of Texas at San Antonio

1 UTSA Circle, San Antonio, Texas 78249, USA

.

ABSTRACT—Ceph is a distributed file system that

provides high performance, reliability, and scalability.

Ceph maximizes the separation between data and

metadata management by replacing allocation tables with

a pseudo-random data distribution function (CRUSH)

designed for heterogeneous and dynamic clusters of

unreliable object storage devices (OSDs). In this paper, we

investigate the performance of Ceph on an Open Stack

cloud using well-known benchmarks. Our results show its

good performance and scalability.

Keywords- OpenStack Cloud, Ceph distributed file storage,

benchmarks

I. INTRODUCTION

Ceph, is a scalable, open source, software-defined storage

system that runs on commodity hardware [1-5]. Ceph has been

developed from the ground up to deliver object, block, and file

system storage in a single software platform that is self-

managing, self-healing and has no single point of failure.

Because of its highly scalable, software defined storage

architecture, Ceph is an ideal replacement for legacy storage

systems and a powerful storage solution for object and block

storage for cloud computing environments [3].

In this paper, we present a Ceph architecture and map it to

an OpenStack cloud. We study the functionality of Ceph

using benchmarks such as Bonnie ++, DD, Rados Bench, OSD

Tell, IPerf and Netcat with respect to the speed of data being

copied and also the read/write performance of Ceph using

different benchmarks. Our results show the good performance

and scalability of Ceph in terms of increasing clients request

and data sizes.

In related work, some results exist on Ceph performance

evaluation on clusters [14], [15]. These papers present

benchmarks with Ceph installed on standard cluster systems.

The rest of the paper is organized as follows. In section II, the

Ceph architecture is presented. Section III contains the

benchmarks that we performed and our results. In section IV,

we present the installation details for Ceph. In section V, we

present conclusions and future work. In section VI, we present

Ceph installation steps.

II. CEPH ARCHITECTURE

We next outline the Ceph storage cluster. The Ceph storage

cluster is made up of several different software daemons. Each

of these daemons takes care of unique Ceph functionalities

and adds values to its corresponding components [5].

Reliable Autonomic Distributed Object Store (RADOS) is

the foundation of the Ceph storage cluster. Everything in Ceph

is stored in the form of objects, and the RADOS object store is

responsible for storing these objects, irrespective of their data

type.

Ceph Daemons: Data gets stored in Ceph Object Storage

Device (OSD) in the form of objects. This is the only

component of a Ceph cluster where actual user data is stored

and the same data is retrieved when a client issues a read

operation.

Ceph monitors (MONs) track the health of the entire cluster

by keeping a map of the cluster state, which includes OSD,

MON, PG, and CRUSH maps. All the cluster nodes report to

monitor nodes and share information about every change in

their state. A monitor maintains a separate map of information

for each component.

Librados library is a convenient way to get access to RADOS

with the support of the PHP, Ruby, Java, Python, C, and C++

programming languages. It provides a native interface to the

Ceph storage cluster, RADOS, and a base for other services

such as RBD, RGW, as well as the POSIX interface for Ceph

file system.

Ceph Block Device, formerly known as RADOS block

device (RBD), provides block storage, which can be mapped,

formatted, and mounted just like any other disk to the server.

A Ceph block device is equipped with enterprise storage

features such as thin provisioning and snapshots.

Ceph Metadata Server (MDS) keeps track of file hierarchy

and stores metadata only for CephFS.

Ceph File System (CephFS) offers a POSIX-compliant,

distributed file system of any size. CephFS relies on Ceph

MDS to keep track of file hierarchy.

The architecture layout which for our Ceph installation has

the following characteristics and is shown in Figure 1.

 Operating system: Ubuntu Server

 Version: LTS 14.04

 Ceph version: 0.87 Giant

 OSDs number: 3

 MONs number: 3

 Clients number : 8

Figure 1 : The ceph architecture

We mapped this Ceph architecture to an OpenStack cloud

system operated by the Open Cloud Institute (OCI) at the

University of Texas at San Antonio. It offers significant

capacity and similar design features found in Cloud

Computing providers, including robust compute capability and

elastic infrastructure design. We used 8 virtual machines.

Each virtual machine has two virtual cpus (VCPUs or cores) ,

and four GB memory. The underlying physical server in the

cloud is a SeaMicro SM15000 system with 64 octal core

AMD Opteron processors with 10Gbps network connectivity.

Then Threads are created each on separate VCPUs. We

performed runs for the clients with 8,12,16 threads.

III. BENCHMARKING

EXPERIMENTS FOR CEPH

Several benchmarks have been proposed for Ceph (e.g. [6, 14-

15] and refs therein). We ran the well-known benchmarks

(Bonnie ++, DD, Rados Bench, OSD Tell, IPERF and Netcat)

that measure the speed of data that is copied and also the read

and write performance of Ceph.

A. Bonnie++

Bonnie++ is an open-source file system

benchmarking tool for Unix OS developed by Russell

Coker [6-10]. Bonnie++ is a benchmark suite that is

aimed at performing a number of simple tests of hard

drive and file system performance. It allows you to

benchmark how your file systems perform with

respect to data read and write speed, the number of

seeks that can be performed per second, and the

number of file metadata operations that can be

performed per second.

It is a small utility with the purpose of benchmarking

file system I/O performance. It is used to minimize

the effect of file caching and tests should be

performed on larger data sets than the amount of

RAM we have on the test system. Bonnie++ adds the

facility to test more than 2G of storage on a 32bit

machine, and tests for file creat(), stat(), unlink()

operations and it will output in CSV spread-sheet

format to standard output.

 We show the Time (Latency) and bandwidth results

for Bonnie++ in Table 1 and Figures 2-3.

Threads 2 4 8

12 16

Write

size

16 16 16 16 16

Time 340 339 337 335 327

Bandwidth 28815 27964 27633 27147 24534

Table -1 for Bonnie++ Bandwidth and Time

ADMIN

Monitor Monitor Monitor

OSD OSD OSD

Client1 Client2 Client3 Client4

Client5 Client6 Client7 Client8

Figure 2 : (Bonnie++) Bandwidth

Figure 3 : (Bonnie++) Time

B. DD (Read and Write)

DD is a benchmark to perform a real-world disk test

on a Linux system. “DD” stands for data description

and it is used for copying data sources. It is the basic

test which is not customizable and shows the

performance of the file system. This is mostly used in

WRITE (copying) into a new file while this is used

for READ speed of a disk by reading the file that is

created [6-7]. DD helps in testing sequential read and

sequential write. We show DD speed in copying data

from 1-8 clients in Table 2 and Figure 6. We show

DD Read and Write time and bandwidth in Tables 3-

4 and Figures 5-8.

 128 MB 256MB 512MB

Client1 2.88 5.8 11.48

Client2 3.06 5.95 11.86

Client3 3.19 5.98 11.91

Client4 3.06 6.00 11.77

Client5 3.15 6.08 12.18

Client6 3.11 6.02 12.18

Client7 3.29 6.48 12.32

Client8 3.27 6.32 12.52

Table 2 : (DD) Speed in copying data

Figure 4 : (DD) Average speed in coping data

DD Read Benchmark:

This benchmark shows the DD performance

(time/bandwidth) using read benchmark for 2, 4, 8 , 12

and 16 threads.

Threads 2 4 8 12 16

Size(MB) 1000 1000 1000 1000 1000

Time 14.49 14.50 14.59 16.12 16.18

Bandwidth 74.1 74.8 73.4 72.16 71.4

Table 3 : (DD read) Time/bandwidth

 Figure 5 : (DD Read) Bandwidth

Figure 6 : (DD Read) Time.

DD Write Benchmark:

The write Benchmark shows the DD performance using

2,4,8, 12 threads and 16 threads.

Threads 2 4 8 12 16

Size(MB) 1000 1000 1000 1000 1000

Time(sec) 26.74 25.39 24.1 23.9 23.6

Bandwidth 45.60 45.39 44.2 43.45 42.75

Table 4 : (DD Write) Time/bandwidth

Figure 7 : (DD Write) Bandwidth

.45

Figure 8 : (DD Write) Bandwidth

C. RADOS Bench (Read/Write)

RADOS is an inbuilt benchmark known as native

benchmark, where RADOS is a utility for interacting

with Ceph object storage cluster which provides the

read and write sequential and random results [6,15].

We show Read and Write time and bandwidth in

Tables 5-6 and Figures 9-11, 13-15. We also show

the total number of Reads (Writes) per thread in

Figure 12 (Figure 16).

RADOS Bench (Read):

We show the performance of RADOS Bench Read for 2,

4, 8, 12 and 16threads. It shows the bandwidth, total time

run, read size, Average and Maximum Latency with

respect to threads.

Threads 2 4 8 12 16

Time 5.145 5.45 5.92 6.28 6.65

Total

Reads

158 162 163 170 179

Read

Size(MB)

4 4 4 4 4

Bandwidth 128.23 129.41 131.84 134.36 142.55

Avg

Latency

0.48 0.49 0.49 0.48 0.48

Max

Latency

1.1 1.27 1.47 1.48 1.49

Table 5: (RADOS Bench Read) Time/bandwidth

Figure 9 : (RADOS Bench Read) Bandwidth

Figure 10 : (RADOS Bench Read) Total time

Figure 11 : (RADOS Bench Read) Mean and Max. time

Figure 12 : (RADOS Bench Read) Total reads per thread

RADOS Bench Write:

We show the performance of RADOS Write benchmark

for 2,4, 8, 12 and 16 threads. This shows the bandwidth,

total time run, write size, Average and Maximum Latency

with respect to threads.

Threads 2 4 8 12 16

Time 32.05 33.16 34.5 34.8 35.6

Total

writes

165 158 157 152 142

Write(MB)

size

4 4 4 4 4

Max

bandwidth

40.64 41.2 43.4 44 44.5

Max

latency

3.12 3.125 3.13 3.17 3.32

Avg

Latency

6.37 6.8 6.92 7.03 7.8

Table 6 : (RADOS Bench Write) Time/bandwidth

Figure 13 : (RADOS Bench Write) Bandwidth

Figure 14 : (RADOS Bench Write) Time

Figure 15: (RADOS Bench Write) Average and maximum

time

Figure 16 : (RADOS Write) Total writes

D. OSD Tell benchmark:

OSD Tell is the native Ceph benchmark, which checks the

functioning of the OSDs with respect to the server [4].

We show the bandwidth between the OSD and the server in

Table 7 and Figure 17.

Threads 2 4 8 12 16

WriteSize 1000 1000 1000 1000 1000

BlockSize 1 1 1 1 1

Bandwidth 1198 1209 1218 1346 1422

Table 7: (OSD Tell) Bandwidth between OSD and Server

Figure 17: (OSD Tell) Bandwidth between OSD and

Server

E. Iperf Benchmark:

 Iperf is a commonly used network testing tool that can create

data streams for Transmission Control Protocol (TCP) and

User Datagram Protocol (UDP) and measure the Connection

Speed (i.e. Throughput) of the network [12]. We show the

bandwidth between the OSD and client in Table 8 and Figure

18.

 OSD1 OSD2 OSD3

Client1 938 938 938

Client2 938 934 937

Client3 939 933 930

Client4 938 927 938

Client5 932 934 938

Client6 938 934 937

Client7 938 937 938

Client8 937 938 938

Table 8: Iperf Bandwidth

Figure 18: (Iperf) Bandwidth

F. Netcat Benchmark:

Netcat (also known as NC) is a computer networking service

for reading from and writing to network connections using

TCP or UDP. This is also a connectivity benchmark [11]. We

show the bandwidth between the OSD and client in Table 9

and Figure 19.

Table 9: Netcat Bandwidth

Figure 19: (Netcat) Bandwidth between OSD and Client

IV. CEPH INSTALLATION ON

OPENSTACK CLOUD

Ceph installation is clearly described in [13]. Here we

summarize the installation steps.

Step 1. Preparation.

Use the latest version of Ceph and also check for the

appropriate Release key and install Ceph on the Admin Node

Authenticate SSH key password less authentication and check

for the access for all the nodes in the ceph cluster from the

admin node.

Step 2. Storage Cluster.

Creating and initialize the cluster. First install ceph from

admin node to each and every other nodes in the cluster.

Initialize and create monitor nodes. Then push admin node

configuration file to other nodes.

Finally prepare and active the designated osd nodes.

Check for the Ceph Health which states Ceph is ready to use .

Step 3. Ceph Clients.

Install ceph from admin node to designated client nodes.

Using RBD command to create an image of block device and

map it appropriate block device.

Create and initialize file system for the block device, after

mounting it to Client’s directory.

Ceph is ready to use with Clients.

V. CONCLUSIONS AND FUTURE

WORK

Ceph, a distributed file system that provides excellent

performance, reliability, and scalability. In this paper, we have

outlined the functionality of Ceph and we installed it on an

OpenStack cloud. We ran well-known benchmarks (Bonnie

++, DD, Rados Bench, OSD Tell, Iperf and Netcat) that

measure the speed of data that is copied and also the read and

write performance of Ceph. The results show that the

performance decreases very slowly as a function of the

number of clients requests. This demonstrates the good

performance and (small-scale) scalability of Ceph in the

OpenStack cloud.

In future work, we plan to run large-scale experiments to show

the scalability of Ceph in a large-scale OpenStack cloud. We

also plan to test the reliability of Ceph in the presence of

faults.

ACKNOWLEDGMENT

We gratefully acknowledge the following:

(i) Support by NSF grant CNS-1419165 to the University of

Texas at San Antonio; and (ii) time grants to access the

Facilities of the Open Cloud Institute of University of Texas at

San Antonio.

VI. REFERENCES

[1] Weil, Sage A., Scott A. Brandt, Ethan L. Miller, Darrell

DE Long, and Carlos Maltzahn. "Ceph: A scalable, high-

performance distributed file system." In Proceedings of the 7th

symposium on Operating systems design and implementation,

pp. 307-320. USENIX Association, 2006.

 [2] Weil, Sage A., Scott A. Brandt, Ethan L. Miller, and

Carlos Maltzahn. "CRUSH: Controlled, scalable,

decentralized placement of replicated data." In Proceedings of

the 2006 ACM/IEEE conference on Supercomputing, p. 122.

ACM, 2006.

[3] Maltzahn, Carlos, Esteban Molina-Estolano, Amandeep

Khurana, Alex J. Nelson, Scott A. Brandt, and Sage Weil.

"Ceph as a scalable alternative to the Hadoop Distributed File

System." login: The USENIX Magazine 35 (2010): 38-49.

 [4] Ceph Storage, Red Hat, 2015 [Online] Available:

http://ceph.com/

 [5] Ceph Documentation [Online] Available:

http://ceph.com/docs/master/

[6] Ceph Benchmarks, Sebastien Han, [Online] Available:

http://www.sebastien-han.fr/blog/2012/08/26/ceph-

benchmarks/

[7] Benchmark Disk IO with DD and Bonnie++, James Cole,

[Online] Available: http://www.jamescoyle.net/how-to/599-

benchmark-disk-io-with-dd-and-bonnie

[8] Bonnie++, Wikipedia [Online] Available:

http://en.wikipedia.org/wiki/Bonnie++

[9] Bonnie++, Russel Coker, Webpage [Online] Available:

http://www.coker.com.au/bonnie++/

 OSD1 OSD2 OSD3

Client1 88 56 15

Client2 98 25 114

Client3 89 98 35

Client4 101 86 95

Client5 98 21 86

Client6 103 99 99

Client7 99 99 42

Client8 85 84 91

http://ceph.com/
http://ceph.com/docs/master/
http://www.jamescoyle.net/how-to/599-benchmark-disk-io-with-dd-and-bonnie
http://www.jamescoyle.net/how-to/599-benchmark-disk-io-with-dd-and-bonnie
http://en.wikipedia.org/wiki/Bonnie

[10] Active Benchmarking [Online] Available:

http://www.brendangregg.com/ActiveBenchmarking/bonnie+

+.html

[11] Netcat, Wikipedia [Online] Available:

http://en.wikipedia.org/wiki/Netcat

[12] Iperf, Wikipedia [Online] Available:

https://en.wikipedia.org/wiki/Iperf

[13] Singh, Karan. Learning Ceph. Packt Publishing Ltd,

2015.

[14] Wang, Feiyi, Mark Nelson, Sarp Oral, Scott Atchley,

Sage Weil, Bradley W. Settlemyer, Blake Caldwell, and Jason

Hill. "Performance and scalability evaluation of the Ceph

parallel file system." In Proceedings of the 8th Parallel Data

Storage Workshop, pp. 14-19. ACM, 2013.

[15] Gudu, Diana, Marcus Hardt, and Achim Streit.

"Evaluating the performance and scalability of the Ceph

distributed storage system." In Big Data (Big Data), 2014

IEEE International Conference on, pp. 177-182. IEEE, 2014.

http://www.brendangregg.com/ActiveBenchmarking/bonnie++.html
http://www.brendangregg.com/ActiveBenchmarking/bonnie++.html
http://en.wikipedia.org/wiki/Netcat
https://en.wikipedia.org/wiki/Iperf

