
Journal of Computational and Applied Mathematics 25 (1989) 153-168

North-Holland
153

s-step iterative methods
for symmetric linear systems *

A.T. CHRONOPOULOS
Department of Computer Science, University of Minnesota, Minneapolis, MN 55455, U.S.A.

C.W. GEAR
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.

Received 15 February 1988
Revised 16 June 1988

Abstract: In this paper we introduce s-step Conjugate Gradient Method for Symmetric and Positive Definite (SPD)
linear systems of equations and discuss its convergence. In the s-step Conjugate Gradient Method iteration s new

directions are formed simultaneously from { r,, Ar,, . . , A “-‘r,} and the preceding s directions. All s directions are

chosen to be A-orthogonal to the preceding s directions. The approximation to the solution is then advanced by

minimizing an error functional simultaneously in all s directions. This intuitively means that the progress towards the
solution in one iteration of the s-step method equals the progress made over s consecutive steps of the one-step

method. This is proven to be true.

Keywords: Iterative methods, s-step, conjugate gradient, convergence.

1. Introduction

Accurate numerical solution of mathematical problems derived from modeling physical
phenomena often requires a capacity of computer storage and a sustained processing rate that
exceed the ones offered by the existing supercomputers. Such problems arise from oil reservoir
simulation, electronic circuits, chemical quantum dynamics and atmospheric simulation to
mention just a few.

There is an enormous amount of data that must be manipulated to solve these problems with a
reasonable accuracy. These data are stored in slower memory layers (shared memory vector
multiprocessors) or in the private memory of each processor for the message passing machines.

Memory contention on shared memory vector multiprocessor systems constitutes a severe
bottleneck for achieving their maximum performance. The same is true for global communica-
tion cost on a message passing system. Thus numerical algorithms should not only be suitable for

* The research was partially supported by the U.S. Department of Energy under grant DOE DEFGO287ER25026
while the first author was at the University of Illinois.

0377-0427/89/$3.50 0 1989, Elsevier Science Publishers B.V. (North-Holland)

154 A. T. Chronopoulos, C. W. Gear / s-step iterative metho&

vector and parallel processing but they must provide good data locality. That is the organization
of the algorithm should be such that data can be kept as long as possible in fast registers or local
memories and have many arithmetic operations performed on them. This means that the

Ratio = (Memory References)/(Floating Point Operations).

must be as low as possible. For example vector operations like the vector updates

U+-U+CU

with a ratio 5 may yield worse performance than linear combinations

k

u+ &u;, k> 2.
i=l

which provide a lower ratio of (k - 2)/2k, k > 2.
Iterative methods are an efficient way to obtain a good numerical approximation to the

solution of Ax = b when the matrix A is large and sparse. The Conjugate Gradient (CG) method
[14] is a widely used iterative method for solving such systems when the matrix A is symmetric
and positive definite. Generalizations of CG exist for nonsymmetric problems.

In an s-step generalization of an iterative method, s consecutive steps of the one-step method
are performed simultaneously. This means, for example, that the inner products (needed for s
steps of the one-step method) can be performed simultaneously and the vector updates are
replaced by linear combinations.

In this paper we introduce an s-step Conjugate Gradient Method and an s-step Conjugate
Residual Method and discuss their convergence. The computational work and storage increase
slightly (for the s-step symmetric methods) compared to their one-step counterparts. However,
their parallel properties and data locality are improved so that the s-step methods are expected
to have superior performance on vector and parallel systems. This is because the s-step method
can be organized so that only sweep through the data per iteration is required and the 2s inner
products required for one s-step iteration are executed simultaneously.

We should point out that the s-step CG presented here is different from two iterative methods
with which it may seem to overlap in the goals achieved. These methods are the block CC [17]
and the Lanczos algorithm for solving linear systems [20,13].

The block CG is used to solve AX = B with dimension X = N X m. This, for example, is the
case when CG is used to solve Ax = b for many (m) right-hand sides. The s-step CG is applied
to solve the linear system with a single right-hand side.

In the Lanczos method an orthonormal basis V, = [ul, . . . , u,] is built for the Krylov space
{ro, A$...} starting from the residual vector r0 = b - Ax. At the same time the symmetric
tridiagonal reduction matrix T, of the matrix A is formed. After convergence is reached the
approximate solution is obtained by inverting the tridiagonal reduction matrix. The size of the
matrix is approximately equal to the total number of steps in CG using the same stopping
criterion. Details can be found in [20]. The Lanczos algorithm forms serially the vectors u.
j=l >**., m using a matrix multiply with the preceding vector and two inner products. Thus ii
has the same shortcomings for parallel processing as the standard CG method.

Next we review different formulations of the standard Conjugate Gradient method. Then we
present an s-step Steepest Descent method. In Sections 4 and 5 we derive s-step formulations for
the Conjugate Gradient, the Conjugate Residual. In Section 6 we discuss the restriction on s to

A. T. Chronopoulos, C. W. Gear / s-step iterative methods 155

avoid severe orthogonality loss between the direction subspaces. In Section 7 and 8 we present
numerical tests and conclusions.

2. The conjugate gradient method

Next we present the conjugate gradient method in three different forms. Algorithms 2.2, 2.3
are stable modifications of the original algorithm [14] but they are more suitable for vector and
parallel processing and do better memory management.

Algorithm 2.1. The conjugate gradient method (CG).
Choose x0
~o=‘o=f-Ax,
For i = 0 Until Convergence Do

1. Compute and Store Api
2. Compute (pi, Ap;)

3. ai = (r;, rl)/(pi> APi)
4. xi+1 = xi + sip,

5. ‘,+1 = r, - a,Api

6. Compute (rj+l, r,+l)
7o bi= (r,+lY ri+l)/(riY ri>

8. P,+I = r,+l + bipi
EndFor.

Storage is required for the entire vectors x, r, p, Ap and maybe the matrix A. Note that step 3
(or step 6) must be completed before the rest of the computations in the same step can start. This
forces double access of vectors r, p, Ap from the main memory at each CG step.

Algorithm 2.2
Choose x0
po=ro=f-Ax,,
Compute and Store Ap,
a, = (r0, ro)/(Ap,, PO), bo = 0
For i = 1 Until Convergence Do

1. x, = xi-l + ai-lp,-l
2. r, = ri_l - a,_,Ap,_,
3. pi=ri+b,_lpi_l
4. Compute and Store Ap,

5. Compute (Apit APi)> (Pi, APi), (Try rj)
6. a, = (r;, c)/(pi, APi)
7. b, = (af(APi, APi) - (Tr, I;))/(?, c>

EndFor.

Computationally the only difference between Algorithms 2.1 and 2.2 is the computation of b,.
Assuming that fast local storage for sections of vectors exists, steps l-5 can be performed with

156 A. T. Chronopoulos, C. W. Gear / s-step iterative methods

one read of the data from the main memory. The scalars computed in steps 6 and 7 are used in
the next iteration. Also, the inner products needed in a single iteration can be executed
simultaneously.

In the Algorithm 2.2, which can be found in 1161, [19] and [3], three inner products are
required for stability reasons. Note that (I;, I;) could be computed before computing I; by use of
the formula (r,, r,) = &,(&_,, Ap,_,) - (T;-~, ri_1) but the resulting algorithm would not be
stable [19]. It has been in general observed that precomputing inner products involving the
vectors pi, r, by using recursion formulas based only on inner products of pi, rj, j = 0,. . . , i - 1
may lead to unstable algorithms. Van Rosendale [21] derived such recursive “look-ahead”
formulas for the CG method.

Next we present another modification of Algorithm 2.1, which is stable based on our
experiments. Unlike Algorithm 2.2 two inner products are computed per iteration but an
additional vector update is required. Also, no inner product is precomputed before the required
vectors p,, ri become available.

Algorithm 2.3
Choose x0
po=ro=f-Ax,

Compute and Store Ar,
aI) = (ro, ro)/(Aro, ro), b_, = 0
For i = 0 Until Convergence Do

1. pi = r, + b;_,p;_l
2. Api = Ar, + bi_lAp,_,

3m xi+l =x;+a;pi

4. ‘1+1 = I; - a, Api

5. Compute and Store Ar,,,

6. Compute (rjtlT r,+l>, (Ar,+lT rj+l)
7. bj = (ri+ly ri+l)/tri, r,>

8. a,+l = k+,, r,+J/KAr,+,~ r,+,l - (bi/ai)(C+,, ?+1>1
EndFor.

We have used the identity

(AP;, Pi> = (Ar,, r,> - (bi-l/a,_l)(ri, r,)

For the Conjugate Residual equivalent no such increase occurs. Storage is required for the entire
vectors x, r, p, Ap, Ar and maybe the matrix A. Assuming that fast local storage for sections of
vectors exists, steps l-5 can be performed with one read of the data from the main memory. The
scalars computed in steps 7 and 8 are used in the next iteration. Also, the inner products can be
executed simultaneously.

Algorithm 2.3 is a variant of CG (or the CR equivalent) and seems more promising than
Algorithm 2.1 for parallel processing because the two inner products required to advance each
step can be executed simultaneously. Also, one sweep through the data is required allowing
better management of slower memories. This algorithm is the s-CG algorithm for s = 1.

Next we will try to generalize this to an algorithm which does one memory sweep per s steps.

A. T. Chronopoulos, C. W. Gear / s-step iterative methods 157

3. An s-dimensional steepest descent method

Solving an SPD Ax = f linear system of equations using the CG method is equivalent to
minimizing a quadratic function

E(x)=(x-h)TA(X--h)

where h = A -‘f is the solution of the system. This error functional is also minimized at each CG
iteration by the choice of the direction vector and the steplength. Here we will examine the
possibility of forming direction spaces instead of single direction vectors (as in CG), and
minimizing the error functional over each space.

Definition 3.1. The s-dimensional affine space

i

s-1

Ls = x, + c ajA’rj : aj scalars and rj = f - Axi
j=o

will be called the s-dimensional space of steepest descent of E(x) at xi.

Since A is not derogatory, r,, Ar,, . . . , A”-‘r, are linearly independent as long as the minimal
polynomial of ri has degree greater than s. In the optimum s-gradient method for minimizing the
E(x), the point xitl is defined to be the unique point in the space Lf for which E(x) assumes a
minimum. Existence and uniqueness follows from the positive definiteness of A. This method
has been described and analyzed in [4], [15] and [12].

Algorithm 3.1. The optimum s-gradient method
x0, ro=f-Ax,
For i = 0 Until Convergence Do

xi+l =x, + a,‘r; + . . . +afA”-‘r,
Select a/ to minimize E(x) over Lf

r;+ 1 = r, - afAr, - . . . -afA”r, or, r,+l = f - Ax,+~
EndFor

Since xi+ I minimizes E(x) over the s-dimensional space Lf and r,+r is the gradient of E(x)

at xi+1 it is necessary and sufficient that r,+ 1 be orthogonal to this space. Equivalently, rjtl
must be orthogonal to { ri, A’r;, . . ., A”-‘r,}. Thus a:,. . ., as can be determined by the s
conditions

(r,, r,) + af(r,, Ar,) + e-0 +ai(r,, A”r,) =O,

(A”-‘r,, ri) + a:(A”-lr,, Ar,) + . * . +a:(A”-‘r,, A”r,) = 0.

Definition 3.2. For k = 0, + 1, f 2, _ . . , let the moments pf of r, be defined by

pf = yTAkr,.

The parameters af, . . . , as can be determined by solving the s X s system of the “normal

158 A. T. Chronopoulos, C. W. Gear / s-step iterative methods

equations”. Since (APr,, Aqr,) = (r;, Apfqrj) = ~f+~, this system has the form

/A-1 + $a; + . . . +pya; = 0.

The matrix of this system is the matrix of the moments of r,

M, is symmetric positive definite as long as r;, . . . , A”-‘r, are linearly independent. Then
a:, . . . , as are uniquely determined. Furthermore, as # 0 because of the assumption that the
minimal polynomial of ri has degree greater than s.

Note that the optimum s-gradient method is a steepest descent method and that the first
iterate is (in exact arithmetic) equal to the s th iterate of the CG method. The work for a single
step is 4sN multiplications and 4sN additions and s matrix vector products and 0(s3)
operations to solve for the u,‘. The storage is s + 1 vectors and maybe the matrix A. This
contrasts with the 5sN multiplications and 5sN additions and s matrix vector products needed
for the s steps of CG.

Although in the past the optimum s-gradient method has been compared to CG [15] our tests
show behaviour analogous to one dimensional steepest descent methods. This is plausible
because no sequence of conjugate directions was formed. It should be noted that the condition
number of the matrix of moments increases prohibitively when s > 10.

The optimum s-gradient method is attractive for parallel processing because we can perform
the matrix vector products one after another without halting to calculate parameters. Inner
products for one iteration can be carried out together or coupled with the matrix vector products.
Finally linear combinations involving more than two vectors have replaced the vector updates.

Next we try to generalize the optimum s-gradient method to an s-dimensional conjugate
gradient method.

4. The s-step conjugate gradient method (S-CC)

One way to obtain an s-step conjugate gradient method is to use the s linearly independent
directions { r,, . . . , A”-‘r,} to lift the iteration s dimensions out of the ith step Krylov subspace
{rO,..., A’$r,,}. Then these directions must be made A-conjugate to the preceding s directions,
which we will call { p,‘_ 1,. . . , pf_ 1 }. Finally, the error functional E(X) must be minimized
simultaneously in all s new directions to obtain the new residual r,+ 1. This method is outlined in
the following algorithm. Note that at each iteration the new residual is computed directly
(r, = f - Ax,). This is because we never compute the vectors Ap,J which is used in computing r, + 1

from r;.

Algorithm 4.1. The s-step Conjugate Gradient Method (s-CG)
x0, p: = r. = f - Axe, . . . , p; = AS-‘r.

A. T. Chronopoulos, C. W. Gear / s-step iterative methods 159

For i = 0 Until Convergence Do
Select a{ to minimize E(x) in

xi+1
=x;+&f+ -0. +a;p;

over Ls = {xi + CJ=la/pP,}

Compute r,+i =f- Ax;+i, A’r,,,, . . ., A”-‘r,,,

Select { bj’~‘)} to force A-conjugacy { p,‘, ,, . . . , pf+ 1 }, { pf, . . . , pf }

Pf+1 = r,+1 + bjl.‘)p,’ + . . . +q”‘p;

P,‘,l =Ar,+1
+ b,‘*.“pf + . . . +bj2.s’p;

EndFor

PS, 1
= A”-‘r,, , + b,‘“*“pf + . * . + bjsTs)pf

The parameters { bj&?} and u{ are determined by solving s + 1 linear systems of equations of
order s. In order to describe these systems we need to introduce some notation.

Remark 4.1. Let u/: = {(p,!, Apf)}, 1 < j,f G s. K is symmetric. It is nonsingular if and only if
1 pi,. . . , pf are linearly independent. Note that for i = 0: w0 = M,,; i.e. the matrix of inner

products initially coincides with the matrix of moments of rO.

Remark 4.2. For j = 1,. . . , s let { b,@i)}, 1 < I < s be the parameters used in updating the
direction vector pi. We use the following s-dimensional vectors to denote them (for simplicity we

drop the index i from these vectors):

b1 = [b;>;‘,.__, b,‘>;‘]T, _._, b” = [b,‘2;‘,..., b(2;‘lT.

For p,! to be A-conjugate to ~f_~, . . . , pf_ 1 } it is necessary and sufficient that

J%_,6i+c1=o, ,..) K_*bs+cs=o, (3.la)

where the vectors cj, 1 <j < s, are

cl = [(r;, Apf-,) ,..., (r,, Apf_,)IT,

cs= [(A”-‘r,, Apf_l),...,(AS-lrj, Ap,“_,)lT.

Remark 4.3. Let (z = [af, . . . , uSIT denote the steplengths used in updating the solution vector at
the i th iteration of the method. It is uniquely determined by solving

HQz=m,= [(r,, p,l) ,..., (r,, ps)]‘. (3.lb)

Remark 4.4. Let Ri and Pi be the s-dimensional spaces {r,, Ar,, . . . , A”-‘r,} and p,‘, . . . , pf}

respectively, and B = [b’, . . . , b”]. Then the following equalities hold true.

Pi = Ri + P,_lB, r, = I;_, - AP,a.

Note that by definition r, is orthogonal to P,_l and Pi is A-conjugate to Pi_1.

Lemma 4.1. The residual r, at the ith step is orthogonal to the space Ri_ 1.

160 A. T. Chronopoulos, C. W. Gear / s-step iterative method

Proof. We have that

Ri_l = Pi_l - P,_,B.

Since r, is orthogonal to the space Pi_l we only need to show that r, is orthogonal to the space
P r_2. This holds from r, = r,_1 - Ap,_ la, the fact that r,_ 1 is orthogonal to the space Pj_2, and
the fact that the space Pj_l is A-conjugate to the space Pj_-2. 0

Proposition 4.1. Under the assumption that the matrices W and Wj_, are nonsingular the linear
systems (3.la), (3.lb) have a nontrivial solution if and only if r, # 0.

Proof. It suffices to show that r, f 0 implies that b’, . . . , 6” and u are nonzero vectors. If ck = 0
for some k then (Ak-‘r,, Apf_,) = . . . =(Ak-‘r,, Apf_*) = 0. This implies that Ak-‘r, is
orthogonal to r, - ri_l and by Lemma 4.1 we conclude that Ak-‘r, is orthogonal to r,. Hence,
rj = 0. Now, mi = [(r,, r,), . . . , (r,, A”-‘ri)lT because r, is orthogonal to the space P,_ 1. Thus
m,#Oaslongas r,#O. q

The following theorem guarantees the convergence of the s-CG method in at most N/s steps.

Theorem 4.1. Let m be the degree of the minimal polynomial of r,,, and assume m > (i + 1)s. Then
the direction spaces Pi and the residuals Ri generated by the s-CG process for i = 0, 1, . , . satisfy the
following relations:

(1) Pi is A-conjugate to P, for j < i.
(2) Ri is A-conjugate to R, for j < i - 1.
(3) P,, Rj, j= 0 ,..., i form bases for the Krylov subspace

V, = {r,,, Ar,,. . ., A(‘+‘)“-lro}.

(4) rj is orthogonal to F’_ 1.

Proof. We use induction on i. For i = 1 the proof follows from the discussion about the
s-dimensional steepest descent method. Let us assume that (l)-(4) hold for i > 1. Since
P, = Ri + P,_,B is A-conjugate (by definition) to P,_ 1 it suffices to show that R i is A-conjugate
to P,,,..., Pi_2. Now write

P,=Rj+ J&k[Rk_,l
k=O

where Ik[R k_ 1] is a linear combination of the vectors R,, . . . , Rj_ 1. Thus the proof of (1) has
been reduced to proving (2).

Now r, = ri_, - APi_Iu is orthogonal to Pi_l (by definition) and to PO,. . . , P,_z (by the
induction hypothesis). Hence by (3) r, is orthogonal to I’_ 1, which proves (4). To prove (2) we
must show that Ri is A-conjugate to Rj, j = 0,. . . , i - 2, or equivalently that r, is orthogonal to
{r-, A+..., A*“-‘5). This holds if { rj, Ar,, . . . , A 2S-1rj} c Vj_l. And this holds (by the induc-
tion hypothesis on (3)) if the degree(A 2S-1q) < is - 1, or (j + 2)s - 1 < is - 1, or j < i - 2. This
proves (2).

The vectors P, and R, for j = 0,. . . , i are A-conjugate by blocks and the belong to the Krylov
space V,. Within each block the vectors are linearly independent. If the contrary is assumed then

A. T. Chronopoulos, C. W. Gear / s-step iterative methods 161

there exist a polynomial p(A) of degree m such that q(A) r0 = 0 and m < (i + 1)s. Which is a
contradiction. This proves (3). 0

Corollary 4.0. If the initial vector x0 is the same for CG and s-CG then the approximate solution
X, given by s-CG is the same (in exact arithmetic) as the iterate Z’,, given by CG.

Proof. By Theorem 4.1 X, minimizes E(x) on the Krylov subspace v, which is exactly what giS
does. •I

The following corollary simplifies the computation of the vectors cJ.

Corollary 4.1. The right-hand side vectors cl, . . . , cs for the linear systems (3.1) become

c* = [0 ,..., 0, (r,, A”r,_,)lT,

c2 = [O ,..., 0, (r,, A”r,_,), (Ar,, A”rj_,)lT,

cS= [(rir A”r,_,) ,..., (A”-‘r,, A”r,_,)lT.

Proof. We use the definition of cl,. . . , cs and pf_,, . . . , P:_~ and Theorem 4.1. 0

Using this result and the fact that A is symmetric we find that the vectors can be obtained from
the s inner products

(A”r,, r,_l), (A”+‘r,, rj_l), (A*“-‘ri, r,--l).

The following proposition reduces the computation of the vectors ci to the first s moments of
ri.

Proposition 4.2. The following recurrence formula holds:

(A (S+k)r,, r,_,) = -($-)u Akrj, r,) + ajf<k’(A”rj, r,_*)
1-l

+ a(s-k+l) Acs+l)rj, ri_
r-l (1)

+ . . . +ajT;‘) A(s+k-*)ri, rj_1 ()I?
fork= l,..., s - 1 and (A”r,, ri_I) = -(ri, r,)/af_,.

Proof. By Theorem 4.1 ri is orthogonal to { Akpf_*, . . . , Akp~Z,“-‘} C K-l. Thus

(Akri, r,) = (Akrj, ri_*) - 2 a,j_,(Akrj, Ap,‘_,)
j-s-k

= (Akri, ri_*) - c a,j_I(Aktjri, ri_l)
j=s-k

which proves the proposition. 0

162 A. T. Chronopoulos, C. W. Gear / s-step iterative methods

The following corollary reduces the computation of w to the first 2s moments of r, and
scalar work.

Corollary 4.2. The matrix of inner products K = (pf, Ap’), 1 < 1, j < s can be formed from the
moments of r, and the s-dimensional vectors bi_,, . . . , bf_, and cf, . . .) cf.

Proof. If we write out pf and pi’ then since pf is A-conjugate to the space P,_l we get

(pf, Ap/) = (A’r,, Ajr,) + bf_,Tcj’. 0

The following corollary reduces the vector m, to the first s moments of r,.

Corollary 4.3. The vector mi can be derived from the moments.

Proof.

mi= [(r;, pi),..., (rr, pf)]‘= [(r;, r,) ,..., (r;, A”-lri)]T. q

We now reformulate the s-CG algorithm taking into account the theory developed above. We
will use

p= [P1,...,PSl, Q = [d,. . . d] >

to denote the direction spaces in the odd and even iterates respectively.

Algorithm 4.2. The s-step Conjugate Gradient Method (s-CG)
Select x0
Set P = 0
Compute Q = [rO = f - Ax,,, Ar,, . . . , A”-‘r,]
Compute 1_2’, . . . , p2’-l

For i = 0 Until Convergence Do
Call ScalarWork
If (i even) then

1. Q=Q+P[d,...,b”]

2e xi+l =xi+ Qu
3. P = [ri+l = f - Axi+l, Ari+l,. . . , A”-‘ri+,]
4. Compute CL’,. . . , pFLzs-l

Else
I. P=P+ Q[b’,...,b”]

2. xi+1 =x;+Pa
3. Q = [ri+l = f - Ax~+~, Ari+I,. . . , A”-‘r;,,]
4. Compute I”‘,. . . , pzs--l

EndIf
EndFor

A. T. Chronopoulos, C. W. Gear / s-step iterative methods 163

ScalarWork Routine
If (i=O) then

Form and Decompose W,
Solve I&a = m,

Else
Solve q_,b’ + cJ = 0, j = 1,. . _, s

Form and decompose w
Solve I@ = mj

Endlf
Return
End

Vector storage is required for P, Q, x, f, and possibly A; the scalar storage is O(s*). The
scalar work per iteration needed to set up and solve the (s + 1) systems of order s is O(s3)
operations. The vector work per iteration is: (s + 1) matrix vector products, 2s inner products
and (s + 1) linear combinations of the form u + C~=,c,u, for 2s(s + l)N operations. On the
other hand the vector work for s iterations of CG is s matrix vector products, 2s inner products
and 6sN operations for vector updates.

Thus for every s iterations of CG, s-CG performs the additional work of one matrix vector
product (Au) and [2s(s + 1)N - 6sN] + 0(s3) floating point operations. The extra matrix vector
product is introduced because the residual vector is computed directly unlike CG where it is the
result of a vector update. If the matrix vector operation dominates the computation of a single
iteration of CG then the larger s the less overhead results. However s is restricted because of
stability reasons and the fact that the overhead due to linear combinations is O(s*N).

The s-CG algorithm has the following advantages over CG for parallel processing:
(i) Steps l-4 can be performed with one read of the data from the memory and efficient use

of fast local storage if the matrix is narrow banded [9].
(ii) The 2s inner products for each step can be executed simultaneously. This improves over

the CG algorithm. Where the two isolated inner products which are performed in each iteration
constitute a bottleneck for parallel computation.

5. s-step conjugate residual method (s-CR)

If we replace (rj, rr) and (A,, r;) by (hi, r;) and (Ar,, Ar,) respectively in Algorithm 2.3 we
obtain one form of the Conjugate Residual (CR) method. As in the one-dimensional CR case the
error functional]) f -Ax,+~ 11 2, where x,+i = xi + a,‘~,’ + . . - +afpf, is minimized over the
(i + l)s-dimensional translated Krylov subspace x0 + { r,,, A-,,, . . . , A(i+l)s-lro } . This gives the
s-dimensional Conjugate Residual Method.

Algorithm 5.1. The s-step Conjugate Residual Method (s-CR)
Select x0
Set P= 0
Compute Q = [r. = f - Ax,, At-,,, . . . , A”-‘r,,]

Compute $, . . . , p*’

164 A. T. Chronopoulos, C. W. Gear / s-step iterative methods

For i = 0 Until Convergence Do
Call ScalarWork
If (i even) then

1.
2.
3.
4.

Else
1.
2.
3.
4.

Q= Q+P[b’,...,b”]
=xi+Qu xd+_l[ri+l =f- Axitl, Ari+l,. . .) A”-‘ri+,]

Compute $, . . . , p2’

P = P + Q[b’, . . . , b”]

;;‘=‘[;I; ‘r: Axi+l, Ari+l,. . .) A”-‘ri+,]
Compute $, . . . , p2’

EndIf
EndFor
ScalarWork Routine

In s-CR the moments $, . . . , p2’ are required instead of the moments p”, . . . , p2’-l for s-CG.
This is the only difference in the computation. This is because we obtained the s-step
generalization of the conjugate gradient method by storing the vectors r,, Ar,, . . . , A”r,, which is
done in the conjugate residual method (for s = 1). Storing the vectors Ap, instead and using them
in calculating the matrix I4$ would amount in computing 0(s2) inner products per iteration. Use
of the vectors Ap; in updating the residual ri is avoided by computing the residual directly (thus
adding an extra matrix vector product per iteration).

For CR we need both Ari and Api, computing the latter via an extra vector update:
Ap; = Ar, + b,_,Ap,_,. Thus the work overhead (compared to CR) is 24s + l)N - 8sN and one
matrix vector product per iteration. Thus the overhead in vector operations of s-CR over CR is
less severe than s-CG over CG.

6. Loss of orthogonality between the direction subspaces

In finite arithmetic the s-dimensional direction subspaces Pi are nt exactly mutually orthogo-
nal. Hence, when we apply s-CG on the system Ax = f, we essentially solve the transformed
system:

I=1 j=l

where 1 < i < n/s and 1 < k < s. Now the diagonal s X s blocks of the matrix are the matrices
I$$ Since a = y-‘rn, we hope to have a good approximate solution at termination if the
diagonal blocks dominate. Let the matrix W, denote the s X s block

(A& p;+i),-..,(4S, /$+I), (A& PS+&&% pi”,,)

then a weaker requirement is 11 “;-‘q 11 -K 1 in some operator norm. Since, (Apf, p/+,) =
(Api, A’-‘rj+,) + TkE1(p,“, Apf)bi we can write the matrix W, in the column form

[(Wld+cl),...,(Ul;bs+eS)].

A. T. Chronopoulos, C. W. Gear / s-step iterative methods 165

The condition above becomes

ll(b’ - 6’) ,..., (b”-@)I1 -=x1

in some vector norm, where bj, &, j = 1,. . . , s are the true and computed scalars.
From the above we conclude that if the condition number of the matrix U: is large it will

introduce large errors in computing the scalars b j. Computing these scalars involves computing
the right-hand side vectors ci via the recurrence formulae (in Proposition 4.2) and solving of s
linear systems each having coefficient matrix v. Since this matrix can be near the matrix of
moments of r,, it may have a relatively large condition number. The observed condition number
of the matrix y for the test problem presented here was 102+” (s < 5), for double precision
arithmetic. Inaccurate computation of the scalars bJ results in orthogonality loss between the
direction subspaces P, and thus slow convergence. However, for small s s-CG the convergence
(based on our experiments) is as good as in CG and it verifies Corollary 4.0.

One way to alleviate the orthogonality loss without reducing the parallelism of the s-CG
method is to A-orthogonalize the direction subspace Pj_l. This can be done simultaneous with
the computation of Ajr,, j = 0,. . . , s - 1 and prior to computing P,. Then the computation is
based on inverting a diagonal matrix in lieu of w. However, this would require additional inner
products and linear combinations. Another way would be to periodically apply s consecutive
steps of the standard CG method.

7. Numerical results

Experiments were conducted on the ALLIANT FX/S multiprocessor system at the Center for
Supercomputing Research and Development of the University of Illinois. Details will be given in
a forthcoming paper [7]; the results are summarized here.

The FX/8 is an example of a supercomputer architecture with memory hierarchy. The
configuration of the FX/S contains 8 pipelined vector processors (CEs) which communicate to
each other via a concurrency control bus used as a synchronization device. Each CE has eight
vector registers and a computational clock cycle of 170 ns. The maximum performance of one
CE is 11 Mflops (million flops/set) for single precision and 5.9 Mflops for double precision
computations. Thus when the 8 CEs run concurrently the peak performance can reach 47.2
Mflops. Each CE is connected via a crossbar switch to a shared cache of 16K (64 bit) words,
implemented in four quadrants. This connection is interleaved and provides a peak bandwidth of
47.12 MW/sec. The cache is connected to an 8 MW interleaved global memory via a bus with a
bandwidth of about 23.5 MW/sec for sequential read and about 19 MW/sec for sequential write
access. Thus accessing data from cache is about twice as fast as assessing it from the global
memory. The ALLIANT FX/S optimizer and compiler restructures a FORTRAN code based on
data dependency analysis for scalar, vector, and concurrent execution.

Let us consider the second order elliptic PDE in two dimensions in a rectangular domain D in
R2 with homogeneous Dirichlet boundary conditions:

(7-I)

where u = H on a&?, and a(x, y), b(x, y), c(x, y), f(x, y) and g(x, y) are sufficiently smooth
functions defined on 0, and a, b > 0, c > 0 on 0. If we discretize (7.1) using the five-point

166 A. T. Chronopoulos, C. W Gear / s-step iterative methods

Table 1
Execution times for the CG and 5-CG

fi Steps Time/set Steps Time/set

64 136 1.08 27 1.1
100 209 4.66 42 4.24
128 266 10.21 53 8.68
160 331 21.26 66 16.92
200 412 41.39 83 32.91
256 525 92.2 107 70.48
300 613 145.01 123 110.98

centered difference scheme on a uniform n x n grid with h = l/(n + l), we obtain a linear
system of equations

Ax=f

of order N = n*. If e(x, y) = h(x, y) = 0, then (7.1) is self-adjoint and A is symmetric and
weakly diagonally dominant [22]. If we use the natural ordering of the grid points we get a block
tridiagonal matrix of the form

where Tk, C, are matrices of order n; and C,, = C,, = 0. The blocks have the form

C,=diag[c,k,...,c:], Tk= [I$,, a:, bk], 1 ,<iGn,

with b,k c 0, ck < 0, b,k = b,” = 0, and a: > 0.

Problem. -(au,), - (bu,), = g on the unit square with homogeneous boundary conditions and
a = b = 1 and u(x, r) = exYsin(~x)sin(7~). The matrix of the discretized problem was stored in
three diagonals of order N to simulate the general fivepoint difference operator. We solved this
problem using 5-step CG, 5-step CR and their one step counterparts on the ALLIANT FX/8.
The termination criterion used was (r,, I;) ‘I2 < 10w6. The results are shown in Tables 1 and 2.
The speed-up factors are

CG/5 - CG = 1.3, CR/5 - CR = 1.5.

Table 2
Execution times for the CR and 5-CR for Problem 1

Jz SteDs Time/set steps Time/set

64 133 1.3 28 1.2
100 201 5.66 40 4.17
128 252 12.24 52 8.95
160 307 23.63 62 16.59
200 376 46.6 76 31.54
256 471 97.8 94 64.07
300 544 158.8 110 103.17

A. T Chronopoulos, C. W. Gear / s-step iterative methods 167

Also, the one-step methods took (for convergence) five times the number of iterations taken by
the 5step methods. This was expected from the theory. This also tests the stability of the s-step
methods.

8. Conclusions

We have introduced an s-step conjugate gradient method and showed that it converges. The
resulting algorithm has better data locality and parallel properties than the standard one-step.
The preliminary experiments demonstrate the stability of the new algorithm and its superior
performance on parallel computers with memory hierarchy. A disadvantage of the s-step
conjugate gradient method is that additional operations (compared to that of the CG method)
are required. Also, for large s > 5 slow convergence has been observed due to loss of orthogonal-
ity among the direction subspaces. This problem is alleviated if preconditioning is used because
the matrix v. is then better conditioned. The design of a stable s-step conjugate gradient method
with no additional vector operations compared to the one-step method remains an open
question.

Acknowledgement

We thank W. Jalby of INRIA/CSRD University of Illinois at Urbana for suggesting the
alternate storage scheme for the direction spaces and pointing out the superior data locality
properties of s-CG. We also thank the anonymous referees whose comments helped enhance
significantly the quality of presentation of this article.

References

[l] H. Akaike, On a successive transformation of probability distribution and its application to the analysis of the
optimum gradient method, Ann. Inst. Statist. Math. Tokyo 11 (1959) l-16.

[2] F.L. Bauer and A.S. Householder, Moments and characteristic roots, Numer. Math. 2 (1960) 42-53.
[3] D. Barkai, K.J.M. Moriarty and C. Rebbi, A modified conjugate gradient solver for very large systems, IEEE

Proc. 1986 Internat. Confer. ParaNeI Processing, August 1985, pp. 284-290.
[4] M.S. Birman, Nekototye ocenki dlja metoda naiskoreisego spuska, Upsehi Matem. Nauk (N.S.) 5 (1950) 152-155.
[S] P. Concus, G.H. Golub and D.P. O’Leary, A generalized conjugate gradient method for the numerical solution of

elliptic partial differential equations, in: J.R. Bunch and D. Rose, Eds., Sparse Matrix Computations (Academic
press, New York, 1976).

[6] P. Concus, G.H. Golub and G. Meurant, Block preconditioning for the conjugate gradient method, SIAM J. Sci.
Stat. Comput. 6 (1) (1985).

[7] A.T. Chronopoulos and C.W. Gear, Implementation of s-step methods on parallel vector architectures, IEEE
Trans. Comput., submitted.

[8] A.T. Chronopoulos and C.W. Gear, Implementation of preconditioned s-step conjugate gradient methods on a
multi processor system with memory hierarchy, Parallel Computing, submitted.

[9] A.T. Chronopoulos, A class of parallel iterative methods implemented on multiprocessors, Ph.D. thesis, Tech.
Rep. UIUCDCS-R-86-1267, Department of Computer Science, University of Illinois, Urbana, IL, 1986.

[lo] J.W. Daniel, The conjugate gradient method for linear and nonlinear operator equations, SIAM J. Numer. Anal. 4
(1967) 10-26.

168 A. T. Chronopoulos, C. W. Gear / s-step iterative methods

[ll] H.C. Elman, Iterative methods for large, sparse, nonsymmetric systems of linear equations, Ph.D. thesis, Tech.
Rep. 229, Department of Computer Science, Yale University, New Haven, CT, 1982.

[12] G.E. Forsythe, On the asymptotic directions of the s-dimensional optimum gradient method, Numer. Math. 11
(1968) 57-76.

[13] G.E. Golub and C.F. Van Loan, Matrix Computations (Johns Hopkins University Press, 1983).
[14] M. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. NBS 49 (1952)

409-436.
[15] I.M. Khabaza, An iterative least-square method suitable for solving large sparse matrices, Comput. J. 6 (1963)

202-206.

[16] G. Meurant, The block preconditioned conjugate gradient method on vector computers, BIT 24 (1984) 623-633.
[17] D.P. O’Leary, The block conjugate gradient algorithm and related methods, Linear Algebra Appf. 29 (1980)

293-322.
[18] E. Stiefel, Uber einige Methoden der Relaxionsrechnung, Z. Angew. Math. Physik 3 (1952) l-33.
[19] Y. Saad, Practical use of polynomial preconditioning for the conjugate gradient method, SIAM J. Sci. Stat.

Comput. 6 (4) (1985).
[20] Y. Saad, On the Lanczos method for solving symmetric linear systems with several right-hand sides, Math.

Comput. 48 (1987).
[21] J. van Rosendale, Minimizing inner product data dependence in conjugate gradient iteration, Proc. IEEE

Internat. Confer. ParalleI Processing, 1983.
[22] R. Varga, Matrix Iterative Analysis (Prentice Hall, Engledwood Cliffs, NJ, 1962).

