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Abstract: In this paper we introduce s-step Conjugate Gradient Method for Symmetric and Positive Definite (SPD) 
linear systems of equations and discuss its convergence. In the s-step Conjugate Gradient Method iteration s new 

directions are formed simultaneously from { r,, Ar,, . . , A “-‘r,} and the preceding s directions. All s directions are 

chosen to be A-orthogonal to the preceding s directions. The approximation to the solution is then advanced by 

minimizing an error functional simultaneously in all s directions. This intuitively means that the progress towards the 
solution in one iteration of the s-step method equals the progress made over s consecutive steps of the one-step 

method. This is proven to be true. 

Keywords: Iterative methods, s-step, conjugate gradient, convergence. 

1. Introduction 

Accurate numerical solution of mathematical problems derived from modeling physical 
phenomena often requires a capacity of computer storage and a sustained processing rate that 
exceed the ones offered by the existing supercomputers. Such problems arise from oil reservoir 
simulation, electronic circuits, chemical quantum dynamics and atmospheric simulation to 
mention just a few. 

There is an enormous amount of data that must be manipulated to solve these problems with a 
reasonable accuracy. These data are stored in slower memory layers (shared memory vector 
multiprocessors) or in the private memory of each processor for the message passing machines. 

Memory contention on shared memory vector multiprocessor systems constitutes a severe 
bottleneck for achieving their maximum performance. The same is true for global communica- 
tion cost on a message passing system. Thus numerical algorithms should not only be suitable for 
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vector and parallel processing but they must provide good data locality. That is the organization 
of the algorithm should be such that data can be kept as long as possible in fast registers or local 
memories and have many arithmetic operations performed on them. This means that the 

Ratio = (Memory References)/( Floating Point Operations). 

must be as low as possible. For example vector operations like the vector updates 

U+-U+CU 

with a ratio 5 may yield worse performance than linear combinations 

k 

u+ &u;, k> 2. 
i=l 

which provide a lower ratio of (k - 2)/2k, k > 2. 
Iterative methods are an efficient way to obtain a good numerical approximation to the 

solution of Ax = b when the matrix A is large and sparse. The Conjugate Gradient (CG) method 
[14] is a widely used iterative method for solving such systems when the matrix A is symmetric 
and positive definite. Generalizations of CG exist for nonsymmetric problems. 

In an s-step generalization of an iterative method, s consecutive steps of the one-step method 
are performed simultaneously. This means, for example, that the inner products (needed for s 
steps of the one-step method) can be performed simultaneously and the vector updates are 
replaced by linear combinations. 

In this paper we introduce an s-step Conjugate Gradient Method and an s-step Conjugate 
Residual Method and discuss their convergence. The computational work and storage increase 
slightly (for the s-step symmetric methods) compared to their one-step counterparts. However, 
their parallel properties and data locality are improved so that the s-step methods are expected 
to have superior performance on vector and parallel systems. This is because the s-step method 
can be organized so that only sweep through the data per iteration is required and the 2s inner 
products required for one s-step iteration are executed simultaneously. 

We should point out that the s-step CG presented here is different from two iterative methods 
with which it may seem to overlap in the goals achieved. These methods are the block CC [17] 
and the Lanczos algorithm for solving linear systems [20,13]. 

The block CG is used to solve AX = B with dimension X = N X m. This, for example, is the 
case when CG is used to solve Ax = b for many (m) right-hand sides. The s-step CG is applied 
to solve the linear system with a single right-hand side. 

In the Lanczos method an orthonormal basis V, = [ ul, . . . , u,] is built for the Krylov space 
{ro, A$...} starting from the residual vector r0 = b - Ax. At the same time the symmetric 
tridiagonal reduction matrix T, of the matrix A is formed. After convergence is reached the 
approximate solution is obtained by inverting the tridiagonal reduction matrix. The size of the 
matrix is approximately equal to the total number of steps in CG using the same stopping 
criterion. Details can be found in [20]. The Lanczos algorithm forms serially the vectors u. 
j=l >**., m using a matrix multiply with the preceding vector and two inner products. Thus ii 
has the same shortcomings for parallel processing as the standard CG method. 

Next we review different formulations of the standard Conjugate Gradient method. Then we 
present an s-step Steepest Descent method. In Sections 4 and 5 we derive s-step formulations for 
the Conjugate Gradient, the Conjugate Residual. In Section 6 we discuss the restriction on s to 
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avoid severe orthogonality loss between the direction subspaces. In Section 7 and 8 we present 
numerical tests and conclusions. 

2. The conjugate gradient method 

Next we present the conjugate gradient method in three different forms. Algorithms 2.2, 2.3 
are stable modifications of the original algorithm [14] but they are more suitable for vector and 
parallel processing and do better memory management. 

Algorithm 2.1. The conjugate gradient method (CG). 
Choose x0 
~o=‘o=f-Ax, 
For i = 0 Until Convergence Do 

1. Compute and Store Api 
2. Compute (pi, Ap;) 

3. ai = (r;, rl)/( pi> APi) 
4. xi+1 = xi + sip, 

5. ‘,+1 = r, - a,Api 

6. Compute (rj+l, r,+l) 
7o bi= (r,+lY ri+l)/(riY ri> 

8. P,+I = r,+l + bipi 
EndFor. 

Storage is required for the entire vectors x, r, p, Ap and maybe the matrix A. Note that step 3 
(or step 6) must be completed before the rest of the computations in the same step can start. This 
forces double access of vectors r, p, Ap from the main memory at each CG step. 

Algorithm 2.2 
Choose x0 
po=ro=f-Ax,, 
Compute and Store Ap, 
a, = (r0, ro)/(Ap,, PO), bo = 0 
For i = 1 Until Convergence Do 

1. x, = xi-l + ai-lp,-l 
2. r, = ri_l - a,_,Ap,_, 
3. pi=ri+b,_lpi_l 
4. Compute and Store Ap, 

5. Compute (Apit APi)> (Pi, APi), (Try rj) 
6. a, = (r;, c)/(pi, APi) 
7. b, = (af(APi, APi) - (Tr, I;))/(?, c> 

EndFor. 

Computationally the only difference between Algorithms 2.1 and 2.2 is the computation of b,. 
Assuming that fast local storage for sections of vectors exists, steps l-5 can be performed with 
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one read of the data from the main memory. The scalars computed in steps 6 and 7 are used in 
the next iteration. Also, the inner products needed in a single iteration can be executed 
simultaneously. 

In the Algorithm 2.2, which can be found in 1161, [19] and [3], three inner products are 
required for stability reasons. Note that (I;, I;) could be computed before computing I; by use of 
the formula (r,, r,) = &,(&_,, Ap,_,) - (T;-~, ri_1 ) but the resulting algorithm would not be 
stable [19]. It has been in general observed that precomputing inner products involving the 
vectors pi, r, by using recursion formulas based only on inner products of pi, rj, j = 0,. . . , i - 1 
may lead to unstable algorithms. Van Rosendale [21] derived such recursive “look-ahead” 
formulas for the CG method. 

Next we present another modification of Algorithm 2.1, which is stable based on our 
experiments. Unlike Algorithm 2.2 two inner products are computed per iteration but an 
additional vector update is required. Also, no inner product is precomputed before the required 
vectors p,, ri become available. 

Algorithm 2.3 
Choose x0 
po=ro=f-Ax, 

Compute and Store Ar, 
aI) = (ro, ro)/(Aro, ro), b_, = 0 
For i = 0 Until Convergence Do 

1. pi = r, + b;_,p;_l 
2. Api = Ar, + bi_lAp,_, 

3m xi+l =x;+a;pi 

4. ‘1+1 = I; - a, Api 

5. Compute and Store Ar,,, 

6. Compute (rjtlT r,+l>, (Ar,+lT rj+l) 
7. bj = (ri+ly ri+l)/tri, r,> 

8. a,+l = k+,, r,+J/KAr,+,~ r,+,l - (bi/ai)(C+,, ?+1>1 
EndFor. 

We have used the identity 

(AP;, Pi> = (Ar,, r,> - (bi-l/a,_l)(ri, r,) 

For the Conjugate Residual equivalent no such increase occurs. Storage is required for the entire 
vectors x, r, p, Ap, Ar and maybe the matrix A. Assuming that fast local storage for sections of 
vectors exists, steps l-5 can be performed with one read of the data from the main memory. The 
scalars computed in steps 7 and 8 are used in the next iteration. Also, the inner products can be 
executed simultaneously. 

Algorithm 2.3 is a variant of CG (or the CR equivalent) and seems more promising than 
Algorithm 2.1 for parallel processing because the two inner products required to advance each 
step can be executed simultaneously. Also, one sweep through the data is required allowing 
better management of slower memories. This algorithm is the s-CG algorithm for s = 1. 

Next we will try to generalize this to an algorithm which does one memory sweep per s steps. 
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3. An s-dimensional steepest descent method 

Solving an SPD Ax = f linear system of equations using the CG method is equivalent to 
minimizing a quadratic function 

E(x)=(x-h)TA(X--h) 

where h = A -‘f is the solution of the system. This error functional is also minimized at each CG 
iteration by the choice of the direction vector and the steplength. Here we will examine the 
possibility of forming direction spaces instead of single direction vectors (as in CG), and 
minimizing the error functional over each space. 

Definition 3.1. The s-dimensional affine space 

i 

s-1 

Ls = x, + c ajA’rj : aj scalars and rj = f - Axi 
j=o 

will be called the s-dimensional space of steepest descent of E(x) at xi. 

Since A is not derogatory, r,, Ar,, . . . , A”-‘r, are linearly independent as long as the minimal 
polynomial of ri has degree greater than s. In the optimum s-gradient method for minimizing the 
E(x), the point xitl is defined to be the unique point in the space Lf for which E(x) assumes a 
minimum. Existence and uniqueness follows from the positive definiteness of A. This method 
has been described and analyzed in [4], [15] and [12]. 

Algorithm 3.1. The optimum s-gradient method 
x0, ro=f-Ax, 
For i = 0 Until Convergence Do 

xi+l =x, + a,‘r; + . . . +afA”-‘r, 
Select a/ to minimize E(x) over Lf 

r;+ 1 = r, - afAr, - . . . -afA”r, or, r,+l = f - Ax,+~ 
EndFor 

Since xi+ I minimizes E(x) over the s-dimensional space Lf and r,+r is the gradient of E(x) 

at xi+1 it is necessary and sufficient that r,+ 1 be orthogonal to this space. Equivalently, rjtl 
must be orthogonal to { ri, A’r;, . . ., A”-‘r,}. Thus a:,. . ., as can be determined by the s 
conditions 

(r,, r,) + af(r,, Ar,) + e-0 +ai(r,, A”r,) =O, . . . . 

(A”-‘r,, ri) + a:( A”-lr,, Ar,) + . * . +a:( A”-‘r,, A”r,) = 0. 

Definition 3.2. For k = 0, + 1, f 2, _ . . , let the moments pf of r, be defined by 

pf = yTAkr,. 

The parameters af, . . . , as can be determined by solving the s X s system of the “normal 
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equations”. Since (APr,, Aqr,) = (r;, Apfqrj) = ~f+~, this system has the form 

/A-1 + $a; + . . . +pya; = 0. 

The matrix of this system is the matrix of the moments of r, 

M, is symmetric positive definite as long as r;, . . . , A”-‘r, are linearly independent. Then 
a:, . . . , as are uniquely determined. Furthermore, as # 0 because of the assumption that the 
minimal polynomial of ri has degree greater than s. 

Note that the optimum s-gradient method is a steepest descent method and that the first 
iterate is (in exact arithmetic) equal to the s th iterate of the CG method. The work for a single 
step is 4sN multiplications and 4sN additions and s matrix vector products and 0(s3) 
operations to solve for the u,‘. The storage is s + 1 vectors and maybe the matrix A. This 
contrasts with the 5sN multiplications and 5sN additions and s matrix vector products needed 
for the s steps of CG. 

Although in the past the optimum s-gradient method has been compared to CG [15] our tests 
show behaviour analogous to one dimensional steepest descent methods. This is plausible 
because no sequence of conjugate directions was formed. It should be noted that the condition 
number of the matrix of moments increases prohibitively when s > 10. 

The optimum s-gradient method is attractive for parallel processing because we can perform 
the matrix vector products one after another without halting to calculate parameters. Inner 
products for one iteration can be carried out together or coupled with the matrix vector products. 
Finally linear combinations involving more than two vectors have replaced the vector updates. 

Next we try to generalize the optimum s-gradient method to an s-dimensional conjugate 
gradient method. 

4. The s-step conjugate gradient method (S-CC) 

One way to obtain an s-step conjugate gradient method is to use the s linearly independent 
directions { r,, . . . , A”-‘r,} to lift the iteration s dimensions out of the ith step Krylov subspace 
{rO,..., A’$r,,}. Then these directions must be made A-conjugate to the preceding s directions, 
which we will call { p,‘_ 1,. . . , pf_ 1 }. Finally, the error functional E(X) must be minimized 
simultaneously in all s new directions to obtain the new residual r,+ 1. This method is outlined in 
the following algorithm. Note that at each iteration the new residual is computed directly 
(r, = f - Ax,). This is because we never compute the vectors Ap,J which is used in computing r, + 1 

from r;. 

Algorithm 4.1. The s-step Conjugate Gradient Method (s-CG) 
x0, p: = r. = f - Axe, . . . , p; = AS-‘r. 
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For i = 0 Until Convergence Do 
Select a{ to minimize E(x) in 

xi+1 
=x;+&f+ -0. +a;p; 

over Ls = {xi + CJ=la/pP,} 

Compute r,+i =f- Ax;+i, A’r,,,, . . ., A”-‘r,,, 

Select { bj’~‘)} to force A-conjugacy { p,‘, ,, . . . , pf+ 1 }, { pf, . . . , pf } 

Pf+1 = r,+1 + bjl.‘)p,’ + . . . +q”‘p; 

P,‘,l =Ar,+1 
+ b,‘*.“pf + . . . +bj2.s’p; 

EndFor 

PS, 1 
= A”-‘r,, , + b,‘“*“pf + . * . + bjsTs)pf 

The parameters { bj&?} and u{ are determined by solving s + 1 linear systems of equations of 
order s. In order to describe these systems we need to introduce some notation. 

Remark 4.1. Let u/: = {( p,!, Apf)}, 1 < j,f G s. K is symmetric. It is nonsingular if and only if 
1 pi,. . . , pf are linearly independent. Note that for i = 0: w0 = M,,; i.e. the matrix of inner 

products initially coincides with the matrix of moments of rO. 

Remark 4.2. For j = 1,. . . , s let { b,@i)}, 1 < I < s be the parameters used in updating the 
direction vector pi. We use the following s-dimensional vectors to denote them (for simplicity we 

drop the index i from these vectors): 

b1 = [b;>;‘,.__, b,‘>;‘]T, _._, b” = [b,‘2;‘,..., b(2;‘lT. 

For p,! to be A-conjugate to ~f_~, . . . , pf_ 1 } it is necessary and sufficient that 

J%_,6i+c1=o, ,..) K_*bs+cs=o, (3.la) 

where the vectors cj, 1 <j < s, are 

cl = [(r;, Apf-,) ,..., (r,, Apf_,)IT, . . . . 

cs= [(A”-‘r,, Apf_l),...,(AS-lrj, Ap,“_,)lT. 

Remark 4.3. Let (z = [ af, . . . , uSIT denote the steplengths used in updating the solution vector at 
the i th iteration of the method. It is uniquely determined by solving 

HQz=m,= [(r,, p,l) ,..., (r,, ps)]‘. (3.lb) 

Remark 4.4. Let Ri and Pi be the s-dimensional spaces {r,, Ar,, . . . , A”-‘r,} and p,‘, . . . , pf} 

respectively, and B = [b’, . . . , b”]. Then the following equalities hold true. 

Pi = Ri + P,_lB, r, = I;_, - AP,a. 

Note that by definition r, is orthogonal to P,_l and Pi is A-conjugate to Pi_1. 

Lemma 4.1. The residual r, at the ith step is orthogonal to the space Ri_ 1. 



160 A. T. Chronopoulos, C. W. Gear / s-step iterative method 

Proof. We have that 

Ri_l = Pi_l - P,_,B. 

Since r, is orthogonal to the space Pi_l we only need to show that r, is orthogonal to the space 
P r_2. This holds from r, = r,_1 - Ap,_ la, the fact that r,_ 1 is orthogonal to the space Pj_2, and 
the fact that the space Pj_l is A-conjugate to the space Pj_-2. 0 

Proposition 4.1. Under the assumption that the matrices W and Wj_, are nonsingular the linear 
systems (3.la), (3.lb) have a nontrivial solution if and only if r, # 0. 

Proof. It suffices to show that r, f 0 implies that b’, . . . , 6” and u are nonzero vectors. If ck = 0 
for some k then (Ak-‘r,, Apf_,) = . . . =(Ak-‘r,, Apf_*) = 0. This implies that Ak-‘r, is 
orthogonal to r, - ri_l and by Lemma 4.1 we conclude that Ak-‘r, is orthogonal to r,. Hence, 
rj = 0. Now, mi = [(r,, r,), . . . , (r,, A”-‘ri)lT because r, is orthogonal to the space P,_ 1. Thus 
m,#Oaslongas r,#O. q 

The following theorem guarantees the convergence of the s-CG method in at most N/s steps. 

Theorem 4.1. Let m be the degree of the minimal polynomial of r,,, and assume m > (i + 1)s. Then 
the direction spaces Pi and the residuals Ri generated by the s-CG process for i = 0, 1, . , . satisfy the 
following relations: 

(1) Pi is A-conjugate to P, for j < i. 
(2) Ri is A-conjugate to R, for j < i - 1. 
(3) P,, Rj, j= 0 ,..., i form bases for the Krylov subspace 

V, = {r,,, Ar,,. . ., A(‘+‘)“-lro}. 

(4) rj is orthogonal to F’_ 1. 

Proof. We use induction on i. For i = 1 the proof follows from the discussion about the 
s-dimensional steepest descent method. Let us assume that (l)-(4) hold for i > 1. Since 
P, = Ri + P,_,B is A-conjugate (by definition) to P,_ 1 it suffices to show that R i is A-conjugate 
to P,,,..., Pi_2. Now write 

P,=Rj+ J&k[Rk_,l 
k=O 

where Ik[ R k_ 1] is a linear combination of the vectors R,, . . . , Rj_ 1. Thus the proof of (1) has 
been reduced to proving (2). 

Now r, = ri_, - APi_Iu is orthogonal to Pi_l (by definition) and to PO,. . . , P,_z (by the 
induction hypothesis). Hence by (3) r, is orthogonal to I’_ 1, which proves (4). To prove (2) we 
must show that Ri is A-conjugate to Rj, j = 0,. . . , i - 2, or equivalently that r, is orthogonal to 
{r-, A+..., A*“-‘5). This holds if { rj, Ar,, . . . , A 2S-1rj} c Vj_l. And this holds (by the induc- 
tion hypothesis on (3)) if the degree( A 2S-1q) < is - 1, or (j + 2)s - 1 < is - 1, or j < i - 2. This 
proves (2). 

The vectors P, and R, for j = 0,. . . , i are A-conjugate by blocks and the belong to the Krylov 
space V,. Within each block the vectors are linearly independent. If the contrary is assumed then 
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there exist a polynomial p(A) of degree m such that q(A) r0 = 0 and m < (i + 1)s. Which is a 
contradiction. This proves (3). 0 

Corollary 4.0. If the initial vector x0 is the same for CG and s-CG then the approximate solution 
X, given by s-CG is the same (in exact arithmetic) as the iterate Z’,, given by CG. 

Proof. By Theorem 4.1 X, minimizes E(x) on the Krylov subspace v, which is exactly what giS 
does. •I 

The following corollary simplifies the computation of the vectors cJ. 

Corollary 4.1. The right-hand side vectors cl, . . . , cs for the linear systems (3.1) become 

c* = [0 ,..., 0, (r,, A”r,_,)lT, 

c2 = [O ,..., 0, (r,, A”r,_,), (Ar,, A”rj_,)lT, 

cS= [(rir A”r,_,) ,..., (A”-‘r,, A”r,_,)lT. 

Proof. We use the definition of cl,. . . , cs and pf_,, . . . , P:_~ and Theorem 4.1. 0 

Using this result and the fact that A is symmetric we find that the vectors can be obtained from 
the s inner products 

(A”r,, r,_l), (A”+‘r,, rj_l), . . . . (A*“-‘ri, r,--l). 

The following proposition reduces the computation of the vectors ci to the first s moments of 
ri. 

Proposition 4.2. The following recurrence formula holds: 

(A (S+k)r,, r,_, ) = -($-)u Akrj, r,) + ajf<k’(A”rj, r,_*) 
1-l 

+ a(s-k+l) Acs+l)rj, ri_ 
r-l ( 1) 

+ . . . +ajT;‘) A(s+k-*)ri, rj_1 ( )I? 
fork= l,..., s - 1 and (A”r,, ri_I) = -(ri, r,)/af_,. 

Proof. By Theorem 4.1 ri is orthogonal to { Akpf_*, . . . , Akp~Z,“-‘} C K-l. Thus 

(Akri, r,) = (Akrj, ri_*) - 2 a,j_,(Akrj, Ap,‘_,) 
j-s-k 

= ( Akri, ri_*) - c a,j_I( Aktjri, ri_l) 
j=s-k 

which proves the proposition. 0 



162 A. T. Chronopoulos, C. W. Gear / s-step iterative methods 

The following corollary reduces the computation of w to the first 2s moments of r, and 
scalar work. 

Corollary 4.2. The matrix of inner products K = ( pf, Ap’), 1 < 1, j < s can be formed from the 
moments of r, and the s-dimensional vectors bi_,, . . . , bf_, and cf, . . . ) cf. 

Proof. If we write out pf and pi’ then since pf is A-conjugate to the space P,_l we get 

(pf, Ap/) = (A’r,, Ajr,) + bf_,Tcj’. 0 

The following corollary reduces the vector m, to the first s moments of r,. 

Corollary 4.3. The vector mi can be derived from the moments. 

Proof. 

mi= [(r;, pi),..., (rr, pf)]‘= [(r;, r,) ,..., (r;, A”-lri)]T. q 

We now reformulate the s-CG algorithm taking into account the theory developed above. We 
will use 

p= [P1,...,PSl, Q = [d,. . . d] > 

to denote the direction spaces in the odd and even iterates respectively. 

Algorithm 4.2. The s-step Conjugate Gradient Method (s-CG) 
Select x0 
Set P = 0 
Compute Q = [rO = f - Ax,,, Ar,, . . . , A”-‘r,] 
Compute 1_2’, . . . , p2’-l 

For i = 0 Until Convergence Do 
Call ScalarWork 
If (i even) then 

1. Q=Q+P[d,...,b”] 

2e xi+l =xi+ Qu 
3. P = [ri+l = f - Axi+l, Ari+l,. . . , A”-‘ri+,] 
4. Compute CL’,. . . , pFLzs-l 

Else 
I. P=P+ Q[b’,...,b”] 

2. xi+1 =x;+Pa 
3. Q = [ri+l = f - Ax~+~, Ari+I,. . . , A”-‘r;,,] 
4. Compute I”‘,. . . , pzs--l 

EndIf 
EndFor 
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ScalarWork Routine 
If (i=O) then 

Form and Decompose W, 
Solve I&a = m, 

Else 
Solve q_,b’ + cJ = 0, j = 1,. . _, s 

Form and decompose w 
Solve I@ = mj 

Endlf 
Return 
End 

Vector storage is required for P, Q, x, f, and possibly A; the scalar storage is O(s*). The 
scalar work per iteration needed to set up and solve the (s + 1) systems of order s is O(s3) 
operations. The vector work per iteration is: (s + 1) matrix vector products, 2s inner products 
and (s + 1) linear combinations of the form u + C~=,c,u, for 2s(s + l)N operations. On the 
other hand the vector work for s iterations of CG is s matrix vector products, 2s inner products 
and 6sN operations for vector updates. 

Thus for every s iterations of CG, s-CG performs the additional work of one matrix vector 
product (Au) and [2s( s + 1)N - 6sN] + 0( s3) floating point operations. The extra matrix vector 
product is introduced because the residual vector is computed directly unlike CG where it is the 
result of a vector update. If the matrix vector operation dominates the computation of a single 
iteration of CG then the larger s the less overhead results. However s is restricted because of 
stability reasons and the fact that the overhead due to linear combinations is O(s*N). 

The s-CG algorithm has the following advantages over CG for parallel processing: 
(i) Steps l-4 can be performed with one read of the data from the memory and efficient use 

of fast local storage if the matrix is narrow banded [9]. 
(ii) The 2s inner products for each step can be executed simultaneously. This improves over 

the CG algorithm. Where the two isolated inner products which are performed in each iteration 
constitute a bottleneck for parallel computation. 

5. s-step conjugate residual method (s-CR) 

If we replace ( rj, rr) and (A,, r;) by (hi, r;) and (Ar,, Ar,) respectively in Algorithm 2.3 we 
obtain one form of the Conjugate Residual (CR) method. As in the one-dimensional CR case the 
error functional ]) f -Ax,+~ 11 2, where x,+i = xi + a,‘~,’ + . . - +afpf, is minimized over the 
(i + l)s-dimensional translated Krylov subspace x0 + { r,,, A-,,, . . . , A(i+l)s-lro } . This gives the 
s-dimensional Conjugate Residual Method. 

Algorithm 5.1. The s-step Conjugate Residual Method (s-CR) 
Select x0 
Set P= 0 
Compute Q = [r. = f - Ax,, At-,,, . . . , A”-‘r,,] 

Compute $, . . . , p*’ 
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For i = 0 Until Convergence Do 
Call ScalarWork 
If (i even) then 

1. 
2. 
3. 
4. 

Else 
1. 
2. 
3. 
4. 

Q= Q+P[b’,...,b”] 
=xi+Qu xd+_l[ri+l =f- Axitl, Ari+l,. . .) A”-‘ri+,] 

Compute $, . . . , p2’ 

P = P + Q[b’, . . . , b”] 

;;‘=‘[;I; ‘r: Axi+l, Ari+l,. . .) A”-‘ri+,] 
Compute $, . . . , p2’ 

EndIf 
EndFor 
ScalarWork Routine 

In s-CR the moments $, . . . , p2’ are required instead of the moments p”, . . . , p2’-l for s-CG. 
This is the only difference in the computation. This is because we obtained the s-step 
generalization of the conjugate gradient method by storing the vectors r,, Ar,, . . . , A”r,, which is 
done in the conjugate residual method (for s = 1). Storing the vectors Ap, instead and using them 
in calculating the matrix I4$ would amount in computing 0( s2) inner products per iteration. Use 
of the vectors Ap; in updating the residual ri is avoided by computing the residual directly (thus 
adding an extra matrix vector product per iteration). 

For CR we need both Ari and Api, computing the latter via an extra vector update: 
Ap; = Ar, + b,_,Ap,_,. Thus the work overhead (compared to CR) is 24s + l)N - 8sN and one 
matrix vector product per iteration. Thus the overhead in vector operations of s-CR over CR is 
less severe than s-CG over CG. 

6. Loss of orthogonality between the direction subspaces 

In finite arithmetic the s-dimensional direction subspaces Pi are nt exactly mutually orthogo- 
nal. Hence, when we apply s-CG on the system Ax = f, we essentially solve the transformed 
system: 

I=1 j=l 

where 1 < i < n/s and 1 < k < s. Now the diagonal s X s blocks of the matrix are the matrices 
I$$ Since a = y-‘rn, we hope to have a good approximate solution at termination if the 
diagonal blocks dominate. Let the matrix W, denote the s X s block 

(A& p;+i),-..,(4S, /$+I), . . . . (A& PS+&&% pi”,,) 

then a weaker requirement is 11 “;-‘q 11 -K 1 in some operator norm. Since, (Apf, p/+,) = 
(Api, A’-‘rj+,) + TkE1( p,“, Apf)bi we can write the matrix W, in the column form 

[(Wld+cl),...,(Ul;bs+eS)]. 
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The condition above becomes 

ll(b’ - 6’) ,..., (b”-@)I1 -=x1 

in some vector norm, where bj, &, j = 1,. . . , s are the true and computed scalars. 
From the above we conclude that if the condition number of the matrix U: is large it will 

introduce large errors in computing the scalars b j. Computing these scalars involves computing 
the right-hand side vectors ci via the recurrence formulae (in Proposition 4.2) and solving of s 
linear systems each having coefficient matrix v. Since this matrix can be near the matrix of 
moments of r,, it may have a relatively large condition number. The observed condition number 
of the matrix y for the test problem presented here was 102+” (s < 5), for double precision 
arithmetic. Inaccurate computation of the scalars bJ results in orthogonality loss between the 
direction subspaces P, and thus slow convergence. However, for small s s-CG the convergence 
(based on our experiments) is as good as in CG and it verifies Corollary 4.0. 

One way to alleviate the orthogonality loss without reducing the parallelism of the s-CG 
method is to A-orthogonalize the direction subspace Pj_l. This can be done simultaneous with 
the computation of Ajr,, j = 0,. . . , s - 1 and prior to computing P,. Then the computation is 
based on inverting a diagonal matrix in lieu of w. However, this would require additional inner 
products and linear combinations. Another way would be to periodically apply s consecutive 
steps of the standard CG method. 

7. Numerical results 

Experiments were conducted on the ALLIANT FX/S multiprocessor system at the Center for 
Supercomputing Research and Development of the University of Illinois. Details will be given in 
a forthcoming paper [7]; the results are summarized here. 

The FX/8 is an example of a supercomputer architecture with memory hierarchy. The 
configuration of the FX/S contains 8 pipelined vector processors (CEs) which communicate to 
each other via a concurrency control bus used as a synchronization device. Each CE has eight 
vector registers and a computational clock cycle of 170 ns. The maximum performance of one 
CE is 11 Mflops (million flops/set) for single precision and 5.9 Mflops for double precision 
computations. Thus when the 8 CEs run concurrently the peak performance can reach 47.2 
Mflops. Each CE is connected via a crossbar switch to a shared cache of 16K (64 bit) words, 
implemented in four quadrants. This connection is interleaved and provides a peak bandwidth of 
47.12 MW/sec. The cache is connected to an 8 MW interleaved global memory via a bus with a 
bandwidth of about 23.5 MW/sec for sequential read and about 19 MW/sec for sequential write 
access. Thus accessing data from cache is about twice as fast as assessing it from the global 
memory. The ALLIANT FX/S optimizer and compiler restructures a FORTRAN code based on 
data dependency analysis for scalar, vector, and concurrent execution. 

Let us consider the second order elliptic PDE in two dimensions in a rectangular domain D in 
R2 with homogeneous Dirichlet boundary conditions: 

(7-I) 

where u = H on a&?, and a( x, y), b(x, y), c( x, y), f(x, y) and g(x, y) are sufficiently smooth 
functions defined on 0, and a, b > 0, c > 0 on 0. If we discretize (7.1) using the five-point 
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Table 1 
Execution times for the CG and 5-CG 

fi Steps Time/set Steps Time/set 

64 136 1.08 27 1.1 
100 209 4.66 42 4.24 
128 266 10.21 53 8.68 
160 331 21.26 66 16.92 
200 412 41.39 83 32.91 
256 525 92.2 107 70.48 
300 613 145.01 123 110.98 

centered difference scheme on a uniform n x n grid with h = l/( n + l), we obtain a linear 
system of equations 

Ax=f 

of order N = n*. If e(x, y) = h(x, y) = 0, then (7.1) is self-adjoint and A is symmetric and 
weakly diagonally dominant [22]. If we use the natural ordering of the grid points we get a block 
tridiagonal matrix of the form 

where Tk, C, are matrices of order n; and C,, = C,, = 0. The blocks have the form 

C,=diag[c,k,...,c:], Tk= [I$,, a:, bk], 1 ,<iGn, 

with b,k c 0, ck < 0, b,k = b,” = 0, and a: > 0. 

Problem. -(au,), - (bu,), = g on the unit square with homogeneous boundary conditions and 
a = b = 1 and u( x, r) = exYsin( ~x)sin( 7~). The matrix of the discretized problem was stored in 
three diagonals of order N to simulate the general fivepoint difference operator. We solved this 
problem using 5-step CG, 5-step CR and their one step counterparts on the ALLIANT FX/8. 
The termination criterion used was (r,, I;) ‘I2 < 10w6. The results are shown in Tables 1 and 2. 
The speed-up factors are 

CG/5 - CG = 1.3, CR/5 - CR = 1.5. 

Table 2 
Execution times for the CR and 5-CR for Problem 1 

Jz SteDs Time/set steps Time/set 

64 133 1.3 28 1.2 
100 201 5.66 40 4.17 
128 252 12.24 52 8.95 
160 307 23.63 62 16.59 
200 376 46.6 76 31.54 
256 471 97.8 94 64.07 
300 544 158.8 110 103.17 
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Also, the one-step methods took (for convergence) five times the number of iterations taken by 
the 5step methods. This was expected from the theory. This also tests the stability of the s-step 
methods. 

8. Conclusions 

We have introduced an s-step conjugate gradient method and showed that it converges. The 
resulting algorithm has better data locality and parallel properties than the standard one-step. 
The preliminary experiments demonstrate the stability of the new algorithm and its superior 
performance on parallel computers with memory hierarchy. A disadvantage of the s-step 
conjugate gradient method is that additional operations (compared to that of the CG method) 
are required. Also, for large s > 5 slow convergence has been observed due to loss of orthogonal- 
ity among the direction subspaces. This problem is alleviated if preconditioning is used because 
the matrix v. is then better conditioned. The design of a stable s-step conjugate gradient method 
with no additional vector operations compared to the one-step method remains an open 
question. 
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