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Abstracf- An integrated finite difference approach is for- 
mulated for the full vector solution using transverse magnetic 
field components for dielectric waveguides, which is particularly 
suitable for nonuniform mesh and internal flux boundary condi- 
tions. This approach creates a sparse banded asymmetric matrix. 
Only few largest positive eigenvalues and the corresponding 
eigenvectors are calculated by the Arnoldi method @awl on 
the modified Gram-Schmidt) coupled with multiple detlation by 
computing a suitable small size matrix. The Arnddi process is 
followed by an inverse power method combined with an iterative 
solver. The nonphysical modes have been exeluded by applying 
the divergence relation V . H = 0. Three numerical examples 
are calculated for verifying the reliability and emciency of this 
technique, the first two of them are used for the cOmpIrjsOn with 
the results obtained by other methods, and last one is a quantum 
well single mode optical waveguide. Tbe technique in this paper 
could be used for any shape of dielectric waveguides with any 
profile of refractive index in the cmss section plane with proper 
Taylor expansion of the index. 

I. INTRODUCTTON 
IELECTRIC waveguides are of interest in a variety of D integrated microwave circuits and optical circuits. The 

guided modes are the very basic physical variable to be known. 
Analysis of the modes of dielectric waveguides is necessary 
for various design. In most cases, the analytical solution for 
the modes is not available, thus the use of numerical analysis 
becomes essential. For the step index profile of dielectric 
waveguides, the mode-matching techniques [ 11, the finite- 
element analysis [2]-[4], and the finite-difference method 
[5]-[7] have been developed for the discretization of the 
wave equation and the computation of the eigenvalues. In this 
paper, we present an integrated finite-difference method [8] to 
discretize the wave equation, and the Arnoldi method [9], [lo] 
coupled with multiple deflation [lo], followed by the inverse 
power method [ l l ]  combined with an iterative solver [12], for 
the calculation of eigenvalues and eigenvectors. 

The integrated finite-difference approach [8] is formulated 
in terms of transverse components of the vector magnetic (H) 
field. A nonuniform mesh is used in the cross section of waveg- 
uides in this approach. The wave equation for each component 
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of the H field is integrated over each cell of the mesh by 
the box integration method [8] in the finite difference scheme 
to discretize the wave equation. The boundary condition at 
the interface with the nearest neighbor cells is enforced by 
employing the transverse and longitudinal continuity of the H 
field. The discretization of these boundary conditions together 
with the wave equation creates a sparse banded asymmetric 
matrix, which has two diagonal sections for H ,  and H,, and 
two off-diagonal sections for the coupling between the H ,  and 
H,. The exponential decay of the H field at the clad layers is 
accounted for by choosing a nonuniform mesh at those regions, 
but the mesh of the guide region is uniform. Only the nonzero 
elements of the matrix are stored. 

The size of the matrix with coupling between the transverse 
components is about four times larger than the matrix without 
this coupling. Solving for all the eigenvalues of the matrix 
for a large number of nodes is too computer intensive. Since 
only few positive eigenvalues need to be obtained, depending 
on the mode structure of the waveguide, finding o method 
for accurately computing few eigenvalues of the matrix is 
highly desirable. We use the modified Arnoldi method [9] with 
multiple deflation to calculate few extreme eigenvalues and 
the corresponding eigenvectors by computing a suitable small 
size matrix. With the multiple deflation [lo], the calculation 
of eigenvalues only follows the few desired ones. For the 
strongly guided modes, the convergence of the calculation is 
fast and accurate. But for single mode waveguides or weak- 
guided modes, improvement of convergence of the calculation 
is needed for rapid convergence. We use the inverse power 
method [ l l ]  to continue the calculation after the Arnoldi 
iteration gives us the initial eigenvalues. This strategy makes 
the convergence of the calculation very fast. The s-step method 
[12] is combined with the inverse power method to avoid 
directly inverting the original matrix. 

We consider three examples. The first two dielectric waveg- 
uides discussed in the literature have strong guided modes. The 
last example is for one of a single mode three quantum well 
optical waveguide structure. 

The Section I1 shows the discretization process, and the 
Section I11 gives the description of numerical technique and 
the calculation strategy. The examples are shown in Section 
IV, and the conclusion is in Section V. 

11. DISCRETIZATION 
Wave propagation in an inhomogeneous dielectric wave- 

guide may be formulated in terms of longitudinal components 
of E or H fields, or alternatively using transverse components 
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Fig. 1. A cell of box integration method 

Combining the (3), (6), and (7) by using finite-difference 
formula as indicated in an box-integration method [8], we 
discretize the wave equations for the H ,  and H ,  as following: 

[13]. In order to eliminate all spurious modes, the zero 
divergence relation of H field must be enforced in the solving 
of wave equation. The formulation in terms of the transverse 
components H ,  and H ,  of H field may be used to advantage 
[ 131 to circumvent the spurious modes. 

We assume a harmonic wave propagation, exp ( - j p z )  in 
the axial direction (z-direction), where the ,L? is the propagation 
constant. The z-component dependent can be separated from 
the x and y components. For each region of constant index of 
refraction, the Helmholtz wave equation becomes: 

1 
+ - k j  - + -  

4h; [ (:: :I) 

- [&( 124 

n1 n4 

- + -  +- - + -  
k .  

+---1_ 
0 2 H ,  + (Icn(z, = P2Hx (1) 
0 2 H ,  + ( k n ( x ,  y))'Hy = p 2 H ,  ( 2 )  4hi-l (E: ::) (:: ::) 

where H ,  and H ,  are the transverse components of the H 
field, k is the wave number in free space, n(x ,  y) is the index 
of refraction, and V = (a/dx,a/ay). We divide the cross 
section into rectangular cells, and each cell is divided into 
four regions based on a box integration method [SI (see Fig. 
1). Each region is assumed to be a constant index of refraction. 
We integrate (1) and (2) over each region as following: 

Ha . nds + /lt,3 (k2n2 - P2)Hadxdy = 0 (3) I,, 
where a is x and y ,  is the boundary of region r, ,3,  n is the 
unit outward normal of c , , ~ .  

The transverse and longitudinal continuity of the H field 
and the longitudinal continuity of the electric field are used 
to meet the interface continuity boundary conditions at each 
internal boundary in a cell as shown in Fig. 1. The longitudinal 
components of the H field and electrical ( E )  field can be 
expressed in terms of H ,  and Hy by using 

V . H = dH, /dz  + dH,/dy - iPHZ = 0 (4) 

where t is the dielectric constant, and w is angular frequency. 
The longitudinal continuity of the H and the E along the each 
interface between region i and j can be expressed as 

1 1 

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 3, 2009 at 03:30 from IEEE Xplore.  Restrictions apply.



DONG et al.: V E O R I A L  INTEGRATED FINITE-DIFFERENCE ANALYSIS 1561 

- 0 . 5 ( 2  - : ) H = ( i , j  - 1) - 0.5 (1: - - - ::) 

(9) 

We restate the (8) and (9) in term of matrix as 

or 

where C,, and Cy, are a five diagonal matrix, C,, and Cy, 
are a three-diagonal matrix, and both of B,, and By, are a 
one-diagonal matrix. This eigenvalue problem can be easily 
transferred to standard eigenvalue problem as 

Ax = Ax (12) 

where A = B-lC and x = U. 

111. NUMERICAL TECHNIQUE 
For a dielectric waveguide, only the guided modes are of 

significance, which implies that few largest positive eigen- 
values are desired. The Arnoldi method [9] can be used to 
compute efficiently few eigenvalues and the corresponding 
eigenvectors of the matrix A of size n x n for the guided 
modes. 

The Arnoldi algorithm is based on the Arnoldi recursion 
for reducing a real asymmetric matrix A to upper Hessenberg 
matrix. The basic Arnoldi procedure can be viewed as the 
Gram-Schmidt orthogonalization of the Krylov subspace basis 
{ q1, Aq1, . . . , Am- 1 q1} . Furthermore, for each m 

(13) 

is the orthogonal projection of A onto the subspace spanned by 
the Arnoldi vectors Qj = {q l ,  . . , q,} such that QmTQ,  = 
I, where I, is the identity matrix of order m. The upper 
Hessenberg Hm is formed in the Arnoldi algorithm. The 
eigenvalues of the upper Hessenberg matrices H ,  are called 
Ritz values of A (in Q,) .  Several of the extreme eigenvalues 
of A-that is, several of the algebraically largest or algebraically 
smallest of the eigenvalues of A-are well approximated by 
eigenvalues of the matrices Hm. The Ritz vector QmZ(=  
x) obtained from an eigenvector Z of a given H ,  is an 

approximation to a corresponding eigenvector of A. Based on 
the Arnoldi method [9], we form matrices H of size rn x m 
and matrix V of size n x m, where m is much smaller than 
n. The extreme eigenvalues Xy of H are approximations 
of the extreme eigenvalues of A. Let p be an extreme 
eigenvalue (of largest or smallest size) of H and Z the 
corresponding eigenvector. The p is an approximation to 
an extreme eigenvalue of A and VZ is its corresponding 
eigenvector. The error predicted from the Arnoldi method [14] 
can be evaluated by 

II(A - p I ) V Z t ( (  hrn+l,m[e:Zl i = 1, .  . ,m (14) 

where ef = (0, . , 1) and 2, is the ith eigenvector of H. 
This evaluation can be used as a stopping criterion. 

After having obtained the first largest positive eigenvalue 
XI, we could compute the second largest eigenvalue by using 
a deflation [lo] process. Let 

A1 = A - X;"(VZ1)TVZ1. (15) 

As a consequence of the Schur-Wieland [lo] deflation the 
largest of A1 is an approxiawtion to the second largest positive 
eigenvalue of A .  Repeating this process we can approximate 
more accurately several positive eigenvalues of the matrix A. 

For a diagonally dominant matrix (or strong guided modes), 
the convergence of the Arnoldi process is rapid. But for the 
case where diagonal dominance no longer exists (i.e., weak 
guided modes), the acceleration of the convergence of the 
eigenvalue calculation is needed. We accelerate the modified 
Arnoldi process by the inverse power method [ll]. We first 
apply the Arnoldi method to get an approximation to the 
(current) largest positive eigenvalue p and the corresponding 
eigenvector 2. We then apply the inverse power method by 
iteratively solving linear systems of the form 

( A  - /d)~ = b ('6) 

using the s-step orthomin (IC) method [12]. The standard 
Orthomin (IC) did not work well due to the lack of diagonal 
dominance (in A). This inverse power technique enhances sig- 
nificantly the accuracy in the approximation of the eigenvalues 
and eigenvectors. 

IV. RESULTS 
In this paper, we present numerical results for three different 

dielectric waveguide structures. The first two are representative 
dielectric waveguides and selected for the comparison with 
previously published numerical approaches [5]-[7]. The spac- 
ing of the mesh in the clad layers is exponentially increased, 
and uniform in the guided region. We use 64 x 64 nodes for 
all of the three structures. All the computations are carried out 
on the CRAY X-MP. 

The first example is a square dielectric waveguide (see Fig. 
2). The transverse structure is invariant under 90' rotation, 
so the first two largest positive eigenvalues, Hr1 and H;,, 
are degenerate (shown in Fig. 2). The normalized propagation 
constant versus normalized wave vectors is shown in Fig. 2. 
We compute only the first three eigenvalues at each given 
frequency. The average CPU time is about 14 s. As the 
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Fig. 6. The distribution of H ,  for the first mode for the channel waveguide. 

Fig. 3. The distribution of H ,  for the first mode for the square dielectric 
waveguide. 

Fig. 7. The distribution of H ,  for the second mode for the channel 
waveguide. 

Fig. 4. The distribution of H ,  for the second mode for the square dielectric 
waveguide. 

frequency decreases, the waveguide tends to cut off all the 
guided modes. Our calculation for this structure without the 
use of the inverse power method converges rapidly, and yields 
a norm of residual less than where the norm of residual 
is defined as I (Ax - Ax( 1. It agrees with the prediction from the 
modified Arnoldi method [9], [14]. Our results also agree wih 
the previously published results from the different numerical 
approaches [5]-[7]. Figs. 3 and 4 show the H, component 
distribution for the first mode and H, component for the 
second mode. They are well confined in the guided region, 
and rapidly decaying in the clad layers. 

The second example is a channel waveguide, Fig. 5 shows 
the waveguide structure and the normalized propagation con- 
stant versus the normalized wave vectors. The first three modes 
are computed in microwave length range. As the frequency 
decreases, the first two propagation constants separate even 

more, and H:l mode is cut off first. As the frequency increases, 
the first two modes of the H ,  are getting close to each other. 
Figs. 6 and 7 show the H ,  component distribution for the first 
two modes. The average CPU time is about 17 s for one set 
of eigenvalues at each given frequency. Our results agree well 
with previously reported results [5], [7]. 

The last example is a single mode quantum well ridge 
waveguide (see Fig. 8). This structure has weak guided modes 
and the guided region is much smaller than the clad layers. 
The numerical results are shown in Fig. 9, the normalized 
propagation constant versus normalized the wave vectors. Fig. 
10 shows the H, component distribution of the first mode. The 
field is weakly confined in the lateral direction. Our calculation 
for this structure needs the acceleration by the inverse power 
method [ 111 to improve the convergence. The maximum norm 
of residual is less than lo-’ for the first two modes. The 
average CPU time is about 1 min. 

V. CONCLUSIONS 

The technique we presented in this paper is including the 
physical reality of hybrid modes as well as the coupling 
between them, and sufficiently flexible for complex structures 
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three quantum well 
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Fig. 8. A quantum well single-mode ridge waveguide, w = 3 p m ,  
d = 0.9 p m .  
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Fig. 9. 
- erlad) versus normalized wave vector 1. = dk(ccore  - ~ ~ l ~ d ) ’ / ~ .  k is 
free space wave vector, eclaCl is the maximum dielectric constant in the clad 
layers, the fCore is the maximum dielectric constant in the guided region, and 
rl is the thickness of the core. 

Normalized propagation constant B = ( (  . J /k )2  - f,.lild ) / (  

Fig. 10. The distribution of H, for the first mode for the quantum well 
single-mode waveguide. 

of dielectric waveguides. We have proved the efficiency, 
reliability, and accuracy for this technique by testing suitable 
examples. 

The first two examples show the multiple-mode structure, 
and the modes are strongly guided. The propagation constants 
are close to the product of maximum dielectric constant and 
wave vector at most frequency region but the cut-off region. 
The corresponding matrices tend to be diagonal dominant, 
and the magnitude of the negative eigenvalues is two orders 
bigger than the positive eigenvalues. The convergence of 
computations for the eigenvalues is fast, without using an 
inverse power method. The last example shows a typical 
structure of a quantum well single mode waveguide structure, 
where the guided region is narrow. The optical field confine- 
ment of the structure is small, about 7%. The single mode 

is weakly guided in this structure, and the rapid decaying 
modes are very dominant. The magnitude of the negative 
eigenvalues is about six orders bigger than the positive eigen- 
value. A relatively large number of nodes is required for 
the convergence of eigenvectors. For such type of waveguide 
structure, efficient, reliable, and accurate numerical technique 
is demanded. 

The numerical technique is suitable for a very large and 
sparse matrix. It is also very flexible with discretization 
techniques. For a different discretization technique, we only 
need to change a subroutine for the matrix multiplication. 
This numerical technique does not use any preconditioning. 
It is presumed that this method will be more powerful with 
preconditioning either in the Arnoldi method (Polynomial) or 
in the inverse iteration (ILU). Currently we use this method 
to analyze step-index profile dielectric waveguides. It is also 
suitable for continuously variable-index profile waveguides, 
by using the first-order approximation of a Taylor expansion 
of the index. 
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