
N·H 
c~ 

JOURNAL OF 
COMPUTATIONAL AND 
APPLIED MATHEMATICS 

ELSEVIER Journal of Computational and Applied Mathematics 54 (1994) 65-78 

On the squared unsymmetric Lanczos method 
A.T. Chronopoulos *.1 

Computer Science Department, University of Minnesota, Minneapolis, MN 55455.. United States 


Received 7 June 1992; revised 5 November 1992 


Abstract 

The biorthogonal Lanczos and the biconjugate gradient methods have been proposed as iterative methods 
to approximate the solution of nonsymmetric and indefinite linear systems. Sonneveld (1989) obtained the 
conjugate gradient squared by squaring the matrix polynomials of the biconjugate gradient method. Here we 
square the unsymmetric (or biorthogonal) Lanczos method for computing the eigenvalues of nonsymmetric 
matrices. Three forms of restarted squared Lanczos methods for solving unsymmetric linear systems of equations 
were derived. Numerical experiments with unsymmetric (in)definite linear systems of equations comparing 
these methods to a restarted (orthogonal) Krylov subspace iterative method showed that the new methods are 
competitive and they require that a fixed small number of direction vectors be stored in the main memory. 

Keywords: Squared biorthogonal unsymmetric Lanczos method; Restarted methods 

1. Introduction 

Consider a linear system of equations 

Ax=b, (1) 

where A is a real unsymmetric matrix of order /II. The transpose of the matrix A will be denoted as 
A*. Throughout this article lower-case characters will denote vectors and Greek letters will denote 
scalars or real functions. Characters with the hat symbol will only denote matrix polynomials in A or 
A*. 

The conjugate gradient or the Lanczos method apply to (1) if A is symmetric and positive definite 
[8,14]. Paige and Saunders [16] have obtained variants of the Lanczos method (called SYMMLQ 
and MINRES) for indefinite symmetric systems [14]. Generalizations of the method of conjugate 
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gradients to (Krylov subspace based) iterative methods for unsymmetric systems have been derived 
by several authors (see, for example, [1,3,4,6,19,23J). 

Faber and Manteuffel [7] proved that any Krylov subspace based variational method would require 
to store a number of direction vectors, which may be equal to the dimension N of the linear system, 
to ensure termination of the process in at most N steps. Thus all the methods described above 
seem to need storage of an a priori unspecified number of vectors (in addition to the matrix). This 
number depends on the nonsymmetry and indefiniteness and condition number of the matrix. The 
biorthogonal Lanczos method for solving linear systems [18], the biconjugate gradients method [8] 
and the biorthogonal Orthodir(2) methods [5,11,12] do not have this limitation. In the absence 
of breakdown, these methods converge in at most N steps with a modest main memory storage 
requirement. Several authors have obtained generalizations of biorthogonal methods with fewer non
breakdown conditions [11,13,17] than the standard biorthogonal methods. 

The conjugate gradient squared method (CGS) [20] was derived from the biconjugate gradients 
method by simply squaring the residual and direction matrix polynomials. CGS does not need 
multiplication by the transpose of a matrix. Thus it turns out that CGS is in practice faster than 
the biconjugate gradients method, though the contrary may occur in some cases [21]. CGS computes 
exactly the same parameters as the biconjugate gradients method and so it has exactly the same non
breakdown conditions as the biconjugate gradients method. Our recent results include the derivation of 
squared versions of the biorthogonal Lanczos method for eigenvalUes, the biconjugate residual method 
and biorthogonal Orthodir(2) [5,15]. Some of these results have also been independently obtained 
in [11,12]. Other authors have derived squared versions of the biorthogonal Lanczos method for 
linear systems [2]. However, these algorithms are simply transpose-free versions of the biorthogonal 
Lanczos method for solving linear systems. 

In this article, we square the biorthogonal Lanczos iteration for eigenvalues. The squared Lanczos 
method forms the same tridiagonal matrix Tm as the biorthogonal Lanczos method. The need for 
multiplication by the matrix transpose has been eliminated. We then obtain squared forms the restarted 
biorthogonal Lanczos method for linear systems. We compare the restarted squared Lanczos methods 
to the restarted Generalized Minimal Residual Method (GMRES) [19]. 

In Section 2 we describe the biorthogonal Lanczos method for eigenvalues and discuss convergence 
conditions. In Section 3 we review the biorthogonal Lanczos method for unsymmetric linear systems 
and derive more robust variants of it. In Section 4 we derive the squared Lanczos method for 
eigenvalues of unsymmetric matrices. In Section 5 we derive the restarted squared Lanczos methods 
for solving unsymmetric linear systems of equations. In Sections 6 and 7 we present numerical tests 
comparing the new squared methods to GMRES and we draw conclusions. 

2. The biorthogonal Lanczos method 

Lanczos . [ 14] introduced a biorthogonal vector generation method and used it to approximate 
the eigenvalues of un symmetric matrices. This method can also be used to solve unsymmetric and 
indefinite linear systems of equations. In this section we review the biorthogonal Lanczos method. 
This method in the absence of breakdown generates a double sequence of vectors Vj, Wj which is 
biorthogonal. This means that (Vj, Wj) = 0, for i :# j. 
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Algorithm 1 (Biorthogonal Lanczos method). 
{31 == o! == 0, Vo == Wo == 0 
VI and WI with (vj, WI) == 1 
For i == 1, ... , m do 

(1) AVh A*Wi 
(2) ai == (AVi' Wi) 

(3) ti+1 == AVi aiVj {3;Vi-! 
(4) Sl+! == A*Wi - aiWi - OiWi~1 

(5) 'Yi+! == (ti+j,Si+l) 

(6) Select {31+1> 0i+l: {3i+I Oi+1 = 'Yi+1 

(7) Vi+! == ti+t/0i+1 

(8) Wi+1 == Si+t/{3i+1 
EndFor 

This method requires modest storage and the computational work is (14NOps +2Mv) per iteration, 
where Mv stands for matrix-vector product by the matrix A or A* and Ops denotes the floating-point 
operations addition or multiplication. 

The method breaks down if for some index the inner product 'Yi+1 == (ti+1> Si+l) is zero. If the 
method does not break down, then the vectors Vi, Wi are biorthogonal and (Vi' Wi) = 1. A standard 
selection for {3i, Oi is 

In the absence of breakdown, a tridiagonal matrix Trn =tridiag[Oi+l, ai' {3i+I], with i == 1, ... , m, is 
formed. The following block vector equation holds: 

(2) 

where Vn! =[vJ. ... , vrn] and e;! == [0, ... , 0,1]. The matrix Tm is known to have extreme eigenvalues 
which approximate the extreme eigenvalues of the unsymmetric matrix A. 

The non-breakdown conditions for the biorthogonal Lanczos method (Le., (Vj, Wi) :f:: 0) can be 
expressed in terms of the matrices of moments of the initial vectors. The following result is proved 
in [18]. 

Proposition 1 (Saad [18]). Let us assume that WI == VI in Algorithm 1. Let Mk be the moment 
matrices of dimension k with entries mjj = (Ai+j~2vl' WI). The first m iterations of the biorthogonal 
Lanczos method can be completed if and only if 

(i) det(Mk) :f:: 0, k == 1, ... , m. 

Proof. From [18]. 0 

We next prove that at least every other matrix Trn is nonsingular. 

Proposition 2. Let us assume that Algorithm 1 does not break down. Then the matrices Trn are 
nonsingular for at least every other index m for 1 < m. 
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Proof. For m =1 or m =2 the truth of the proposition is easily checked since f3i and Oi are not zero. 
Let us assume that T,II-I is singular for 2 < m. We apply the Givens QR method to the matrix Tm to 
find its rank. We first apply row pennutations P = Pm.m+1 ••• P1,2 to the matrix Tm. This moves the 
first row of Tm to the bottom of the matrix, and leaves us with a new matrix Hm = PTmconsisting of 
an (m - 1) x (m - 1) upper triangular matrix augmented with a single row. The matrices Hm and Tm 
have the same rank. So we will apply QR to the matrix Hm. Let Q;,m be the Givens rotation of the ith 
and mth rows of Hm which annihilates the entry (m, i) of Hm. Then the orthogonal transfonnation 
Q(m-I,m) ... Q(l,III) reduces Hm to upper triangular. 

For illustration purposes we consider the matrix Tm for m =5 and denote by x its nonzero entries: 

x x 0 0 0]xxxOO 
OxxxO . 
OOxxx 
OOOxxI

The matrix Hm has the following fonn for m = 5: 

x x x 00]OxxxO 
OOxxx . 
OOOxx 
xxOOO 

We observe that Tnt contains Tm- I as a leading sub matrix. Also, the matrix Hm contains the matrix 
Hm- 1 as a submatrix. We now consider the application of Givens QR to Hm. From the assumption 
the rank of matrix Hm- I equals m 2. This implies that the application of the (m 2)th row rotation 
(Q(m-2,m) •• 'Q(l,m» eliminates all the entries of the last row except for entry (m, m) which equals 
cos(O)f3m (where cos(O) '* 0 is the cosine tenn in the rotation). After the last rotation has been 
applied, the matrix becomes 

x x x 00]OxxxO 
OOxxx . 
OOOxx 
OOOOxI

Now it is clear that Hm has rank m. 

3. The biorthogonal Lanczos method for linear systems 

The biorthogonal Lanczos method can be used to solve the linear system of equations (I). Let 
r[ denote the initial residual [b - AXI], where Xl is the initial guess solution vector. We select 
VI = ro/ II ro" and WI = VI' Let us assume that no breakdown occurs (in Algorithm 1) and the 
biorthogonal subspaces Vm+1 = [Vh . .. , Vm+l], Wm+1 = [WI, ... , wm+d are computed. The subspace 
v"t can be used to construct an approximate solution of (1) as follows [18]: 
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Xm+1 = XI + v",Zm' (3) 

Using (2), we write the residual vector as follows: 

(4) 

where ej for j = 1,2, ... are the Euclidean basis vectors, z;" = e~Zm and the matrix Tm equals the 
matrix Tm plus the additional row Om+1 e~. In the standard Lanczos method it is required that the 
residual rm+l = rl - A~1tZm is biorthogonal to Wm. This requirement and (4) lead to the linear system 

(5) 

The matrix Tm is assumed nonsingular [14,18]. The solution Zm is then used in (3) to compute Xm+l' 

From (4) and (5) it follows that the residual norm can be obtained from the formula 

(6) 

where (Tn! =z;"8m+! . 
We will now remove the assumption that the matrix Tm is nonsingular and still define a biorthogonal 

Lanczos method for linear systems. We only assume that Algorithm 1 does not break down. Let us 
now consider two ways of obtaining Zm. 

Method I. This method will be called Biorthogonal Lanczos QR method (BiLQR). Linear system 
(5) is equivalent to 

Hmzm = IIrlllem. 

We apply QR decomposition to this linear system. When the matrix A is symmetric, this method is 
similar to Paige and Saunders' SYMMLQ [16]. 

Now, let Hm be singular. Then it has rank m 1. We propose two approaches for a robust BiLQR 
method. The first approach checks for singular Hm and makes use of Proposition 2 to guarantee that 
Hm+1 is n~msingular. The second approach modifies Hm regardless if it is singular or not. 

(a) In the QR decomposition the (m, m) entry of Q(m-2),m" ·Ql,n.Hm is checked and if it is nearly 
zero, the algorithm moves to form Hm+1 and solve Hm+1Zm+1 = Ilrtllem+I' The residual vector can be 
computed from (6) and its norm can be used to monitor the convergence of the method. 

(b) We modify the (m -l)th row of Hm to [0, ... ,0, 8n" ±8m]. This new matrix will be denoted 
by fIm. The sign ± is chosen equal to (-1 times) (product of the signs of the entries (m, m - 1) 
and (m,m) of Q(m-2).m· .. QI,mHm)' This selection makes the (m - l)th row and the last row 
of Q(m-2).m··· Ql,mHm linearly independent. This is easily checked because the entry (m, m) of 
Q(m-2),m' .. QI.mHm equals f3m-l and it is nonzero by assumption. Thus the only way that rows m - 1 
and m of Q(m-2),m' .. Ql,mHm may become linearly dependent occurs by having nearly the same 
entries (m - 1, m - 1), (m - 1, m) and (m, m - 1), (m, m), respectively. This possibility is eliminated 
by the choice of ± in forming the entry (m - 1, m) of fIm• We now rewrite (4) for the residual 
using this method: 

rm+l = Vm [llrlllem - Hmzm] + (TmVm+! = Vm [lirt II em - fImzm] + iTmVm + (TmVm+h (7) 

where lr m = (Tom - CfnJ z;". Since the matrix fIm is invertible, we solve 

fImzm = IIrlllem (8) 



70 A.1: Chronopoulosl Journal of Computational and Applied Mathematics 54 (1994) 65-78 

(via QR decomposition) and obtain the residual vector 

(9) 

It is clear that rm+! is biorthogonal to Wm- I , for 1 < m. 

Method II. This method solves the (linear least-squares) problem: 

Min IIfIm2m Ilrlllem II ( 10) 
zEIRIII 

to compute 2m. The matrix fIm is obtained from the matrix Tm by permuting rows so that the first 
row becomes last (see Proposition 2 for a similar derivation of Hm). It is checked using (4) that 

Min Ilrm+111 ~ 11v;,~+1 v,,,+tlP /
2 Min IlfImzm- Ilrlllem II·

zER"' zERm 

When the matrix A is symmetric, this method is the Paige and Saunders' MINRES. This method 
will be called Biorthogonal Lanczos Minimal Residual method (BiLMINRES). For A symmetric, 
the factor II V';;+I V,1l+111 equals 1. However, for A un symmetric, this factor may be very large. Another 
shortcoming of this method for A un symmetric is that rm+l is not biorthogonal to Wm• This method 
can viewed as a special case of the QMR method (by Freund and Nachtigal) without lookahead 
[10] . 

Corollary 3. Let us assume that WI = VI =rdllrdl in BiLMINRES or BiLQR, where rl is the initial 
residual vector. The methods BiLMINRES or BiLQR do not break down and provide the approximate 
solution Xm+1 if and only if (i) in Proposition 1 holds. 

Proof. From Propositions 1 and 2 and the definition of the methods. 0 

For comparison we mention that to compute Xm+1 the biconjugate gradients method and CGS 
in addition to (i) of Proposition 1 the following additional m non-breakdown conditions must be 
satisfied: 

(ij) det(MD + 0, 1 ~ k ~ m, 
where M~ are the moment matrices of dimension k with entries m~j = (Ai+}-I V1 •wd. 

This result was proved in [18]. The TFQMR methOd [9] (by Freund) has the same non-breakdown 
conditions as CGS. 

4. The squared biorthogonaI Lanczos method for eigenvalues 

In this section we derive the squared biorthogonal Lanczos method (SBiL) by squaring the 
biorthogonal Lanczos method matrix polynomials and obtaining a simple recurrence equation for 
generating them. This derivation was first presented in [5]. We will use characters with hat to denote 
the polynomials (in variables A or A*) which, if applied to VI> yield the corresponding biorthogonal 
Lanczos vectors. 

Notation. In the biorthogonal Lanczos method, let Vi and Wi be the polynomials of degree i such that 
Vi =vi(A)Vl and Wi =wj(A*)wl' 
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Remark 4. In the biorthogonal Lanczos method the vectors Wi are used only in determining the 
parameters aj and (3i' 

The parameters in the biorthogonal Lanczos method can be expressed in terms of products of the 
matrix polynomials Vj and Wi in the matrix A only. To see this, we write 

(11) 

and 

(12) 

Therefore we must find a recursion to compute the polynomials ui(A)wj(A) and AUi(A)Wi(A). We 
note that these polynomials do not depend on the order of their factors. For example, Di(A)wj(A) ::;; 
wj(A)uj(A). 

Multiplication of the polynomials tj+1 and Si+1 from (3) and (4) of Algorithm 1 yield 

tj+ISi+1 ::;; A[ (AUjWi 2ajDiwi) ({3jVi-IWj +8jVjWi_l)] +afujwj (13) 

+ aj({3iVj-IWj + 8jUiWi-d +!3j8jUj-IWj-l. (14) 

In order to be able to compute ti+ISj+1 recursively, we need to compute recursively SHIVi :::: 
!3HlUiWi+ I and tj+IWj::;; 8Hl Dj+1wj. From (3) and (4) of Algorithm 1 we obtain 

(15) 

(16) 

It can be easily checked by induction that Si+1Vi::;; ti+IWj. 
We set Ui+l ::;; ti+lSi+t!'Yi+1 and PHI:::: ti+IW/::;; Vi+IWi' Then we obtain the simplified expressions 

(17) 

and 

(18) 

We next present the SBiL method in matrix polynomial form. We first need the following notation. 

Notation. The inner product [D, w] of the matrix polynomials (in A) vand Wstands for the inner 
product (D(A)vJ, W(A*)Wl)' 

Algorithm 2 (The Squared Biorthogonal Lanczos Method (SBiL». 
'Yl ::;; 0, Uo :::: 0 and PI :::: Ul ::;; 1 
For i::;; 1, ... , m do 

( 1) Compute Au, 
(2) ai:::: [l,Aud 
(3) Yi:::: AUt aiui 
(4) Compute A2uj 
(5) AYi::;; A2uj a/Auj 
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(6) Ui+l = AYi - aiYi - 2APi + 2aiPi + YiUi-l 
(7) Yi+1 = [1, ui+d 
(8) UI+I =Ui+I/Yi+l 
(9) Pi+l = Yi Pi 

(10) APi+1 = AYi - APi 
EndFor 

Let the characters without hat represent vectors which equal the matrix polynomials applied to Vj 
(e.g., Ui = Ui (A) VI)' Then the vector form of this algorithm can be obtained by removing the hat and 
replacing the unit polynomial by VI. This method requires computational work equal to (19N Ops 
+ 2 Mv) per iteration. Let Tm = tridiag[ 01+1> ai, ,8i+l], where ai, 'YI are computed in (2) and (7) 
(respectively) of Algorithm 2 and Oi+1 = IYi+ljl/2 and ,8i+1 = 0i+1 sign('Yi+d. Algorithms 1 and 2 
compute the same matrix Tn" which can be used to approximate the extreme eigenvalues of A. So, 
Algorithm 2 is a matrix transpose free un symmetric Lanczos for eigenvalues. 

Let VI = WI; then the polynomials Vi and Wi are equal up to a sign. 

Remark 5. Let us assume that Algorithm 1 does not break down and VI = WI. Then the polynomials 
Vi and Wi satisfy the equalities Vi = (-1 )i'Wi where is is number of sign changes in the sequence 
,8j for 1 ~ j ~ i. To see this, let 0; = ±,8i, Wi-I = ( 1)1,-IDI_1 and Wi = (_I)i'VI = ±(_l)i,-I. 
Then SI+I = (AWi - alwi) O;Wi_1 =(-I)is[ADi - a;vi f3iv;-d = (-1);'(1+1' Now it follows that 

A A(1) (i+ I)Wi+1 = - 'Vi+I' 

If VI = WI> Remark 5 allows us to compute Dr and ViVi-1 from Algorithm 2 for little extra work. 

Remark 6. We apply Remark 5 to Ui =ViW; and Pi = VjWi_1 to compute vr = (_l)i'Uj and VjVi-1 = 
( 1)is pj ,8i, respectively. To achieve this, we need a vector of size m to keep track of the occurrences 
of negative signs in the sequence of ,8i> for i = 1, ... , m. 

In the following section we use Algorithm 2 as part of a squared Lanczos for linear systems. 

5. The restarted squared Lanczos method for linear systems 

In this section we present a squared form of the restarted BiLMINRES and BiLQR methods of cycle 
(consisting of m iterations) which will be called SBiMINRES(m) and SBiLQR(m), respectively. 
We need the following remark. 

Remark 7. Assume that XI =0 and I'" II =1. To achieve this, one redefines (l) to become Ax = b 
where b=b - AXI; then, scaling this system gives Ilrlll = 1. 

Remark 7 implies that (in the BiLMINRES and BiLQR methods) VI = rl' Also, from (3) the 
solution Xm+l = v,nZnl> where the Lanczos vectors Vm = [vJ, ... ,vm ] are of the form vi(A)vl> for 
i = 1, ... , m. So, the solution Xm+1 is of the form xm+! (A)vJ, for a matrix polynomial xm+!' 

We will derive the recurrences for the matrix polynomial form of the algorithms for a complete 
cycle. Then the vector form of the algorithms can be obtained by removing the hat and replacing the 
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unit polynomial by v1. We will use the vector notation wherever it is more concise and it does not 
lead to confusion. 

Notation. The residual and solution vectors in SBiMINRES(m) and SBiLQR(m) (after m iterations) 
will be denoted by r~1+ 1 and x;',+l' respectively. 

Let us now consider the residual vector rm+l (in BiLMINRES and BiLQR) updated in a recursive 
form qi+l = qi - Z~,AVi' for i = 1, ...• m, where ql = rJ, rm+l = qm+l and Zm is the solution of (8) 
or (10). The vectors ql are intermediate residual vectors but they do not have the properties of 
the residual vectors rm+l generated by BiLMINRES or BiLQR. The recursion for the intermediate 
residual matrix polynomials becomes 

(19) 

We next derive a recurrence for the squared intermediate residual polynomials tH, which will be 
denoted by Ri, for i = 1, ... , m+ 1, where r~J+l =Rm+1• We then derive the corresponding intermediate 
solution polynomials Xl, for i = 1, ... , m + 1, where xi = XI and X~J+l = Xm+1• Squaring the 
intermediate residual polynomials in (19), we obtain the squared intermediate residual polynomials 

(20) 

for i = 1, ... , m, where Aq/J j is computed by direct matrix times vector multiplication and (from 
( 19) and Algorithm 1) we obtain 

(21) 

where 

(22) 

and 

(23) 

Now, to derive the solution polynomials for SBiMINRES(m) or SBiLQR(m), we use (20) and the 
fact that R; =b - AXi , for i = 1, ... , m, 

(24) 

So the solution vector is X~/+I =Xm+l • 

We use Remark 6 to show that ADt =(-I)isAui' A2Dl =(-l)isA2u; and Ai\vi-\ =(-l)isApd/3i' 
The polynomials Au;, A2u; and Ap, are computed in Algorithm 2. We will use l" gi-\ and h,-2 to 
denote q/J;, qi-!fJi and q,-IVi-2, respectively. We summarize the defining equations (20)-(24) (using 
matrix polynomials) for one complete cycle (of m iterations) of SBiMINRES(m) or SBiLQR(m) 
in the following algorithm. 

Algorithm 3 (SBiMINRES(m) or SBiLQR(m». 

Compute Au" A2u;, Api and ai, /3;, 0, in Algorithm 2 for i = 1, ... , m 
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Compute Zm in (8) (or (10» 
Set 11 = 1, Xl =0 and RI =1 
For 	i = 1, ... , m do 

(1) If (i ~ I) goto (5) 
(2) If (2 < .). h~ - fA ;-2( 1)(i-2)AAI. ;-2 - 1-2 Zm - 'Ui-2 

(3) gi-l = 1/8i [Al- 1 - Cfi-di-I - ,8i-lhi-2] 

(4) l = gi-l z)l-l (_1)i, Apt!,8; 

(5) 	Compute Afi 

A _ A i A i i 2 2'"


(6) Ri+1 - Ri - 2zI1IAfi + (-1) '(zm) A Ui 
" ,.. . ,. ,. 2 

(7) Xi+1 = Xi + 2z~J; ( 1)1'(Z~I) Au; 
EndFor 

The vector form of Algorithm 3 can be obtained by removing the hat and replacing the unit 
polynomial 1 by VI' For SBiLQR(m) equation (6) of Algorithm 3 is deleted because the residuals 
can be computed in a simpler way described in the following remark. 

Remark 8. In SBiLQR(m), Rm+l can be computed from umand Um+l. For approach (a) by squaring 
the matrix polynomials in (6) and using Remark 6, we obtain 

A 2( l)(m+I),ARm+l 	= (Tm - Um+l' (25) 

For approach (b) by squaring the matrix polynomials in (9) and using Remark 7, we obtain 

A _-2( l)nl,A +2- (-l)nl,,, + 2( 1)(m+l),ARnl+l - (Tn! - UI1I (Tm(Tm,8 Pm (Tm - Um+l· (26) 
m 

The computational cost for SBiMINRES(m) and SBiLQR(m) requires (l9NOps + 2Mv) per 
iteration for the Algorithm 2 part. The computation of Rm and Xm requires an extra (17N Ops 
+ 1 Mv) per iteration for SBiMINRES(m) and an extra «(13 + 4/m) NOps + 1 Mv) per itera
tion for SBiLQR(m) (using (26». So the total work equals (36NOps + 3Mv) per iteration for 
SBiMINRES(m) and «32 +4/m)NOps + 3 Mv) per iteration for SBiLQR(m). It also requires to 
keep in secondary storage the vectors Au;, A2ul, Api in Algorithm 2 for i = I, ... ,m until they are 
used in Algorithm 3. 

Remark 8 allows us to monitor the size of II Rm+l (A)Vlll for little additional work and select 
dynamically the cycle size for restarting. We implemented SBiLQR to dynamically select the size of 
a cycle with a maximum allowable size mo. 

The modified SBiLQR method is the following implementation of the restarted SBiLQR with 
varying cycle size. The residual norm is monitored and the cycle ends by applying the following 
criteria. 

( 1) Either the norm of the residual (given by (26) for some m = 1, ... , mo + 1) is smaller than 
the residual norm of the preceding cycle; 

(2) or after mo steps of Algorithm 3. 

In case (2), let ml: IIRm,(A)vdl = Minu~m~mo+lIIRm(A)vdl . The solution is computed (in cases 


(1) and (2» basedonSBiLQR(md· 
This implementation leads to less oscillatory behavior of the residual error norm and faster con

vergence. 
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6. Numerical tests 

We have discretized two boundary value problems in partial differential equations on a square 
region by the method of finite differences. The first problem is a standard elliptic problem which 
can be found in [19] and the right-hand side function is constructed so that the analytic solution is 
known. The second problem is taken from [22]. 

Problem I. 

where 

P([.,[2) = e-M2 , cr([h[2) =eM2 , 

r([., [2) =fi * ([I + [2), ([10[2) =Y* ([1 +[2), 

1 

¢([l, [2) = (1 + [1[2) , 


with Dirichlet boundary condition and X([h [2) the corresponding right-hand side function. By 
controlling y and fi, we could change the degree of nonsymmetry. We chose y = 50.0, fi =1.0. 

Problem II. 

where 

We have used the five-point difference operator for the Laplacian, central difference scheme for 
the first derivative. We placed 200 uniform grid points in each dimension. This yielded unsymmetric 

X S(nonsingular) linear systems of 40,000 equations. The initial guess is = 0 and the stopping 
criterion was Ilr~I+111 < € with € =10-1

. We have used the standard Incomplete LU preconditioning 
(ILU(O». We run SBiLQR(m), SBiMINRES(m) and GMRES(m) all with m =15. We also run 
modified SBiLQR with maximum allowed cycle size m = 15. We plotted the logarithm (with base 
10) of the residual norm versus the number of iterations in Figs. 1 and 2. It is clear from the figures 
that the GMRES gives a smooth curve and curves for SBiLQR and SBiMINRES oscillate. 

In terms of work, GMRES (m) requires « 2m + 3m + 2/m) N Ops + (1 + 1/m) M v) per iteration 
while SBiLQR(m) and SBiMINRES(m) require (36NOps + 3Mv) and «32+4/m)NOps + 3Mv) 
per iteration, respectively. SBiLQR(m) and SBiMINRES(m) require more storage than GMRES(m). 
The SBiLQR method seems to perform the best in terms of number of iterations and overall work. The 
modified SBiLQR gives a smoother curve than SBiLQR(15) and SBiMINRES(15). In the modified 
SBiLQR the number of additional iterations of Algorithm 2 that were performed but not used for 
the solution (in Algorithm 3) were 22 in Problem I and 15 in Problem n. Note that iterations of 
Algorithm 2 are less expensive than iterations of Algorithm 3 (steps (1 )-(8». 
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Fig. L Problem I, iterations. 

7. Conclusions 

We derived the squared Lanczos method for eigenvalues of unsymmetric matrices. The squared 
Lanczos method forms the same tridiagonal matrix Tm as the biorthogonal Lanczos method. The 
need for multiplication by the matrix transpose has been eliminated. We derived robust biorthogonal 
Lanczos methods for linear systems. We then obtained restarted squared forms of these methods. We 
compared the new squared methods to the restarted Generalized Minimal Residual Method (GMRES). 
The residual norms in the new methods are initially very large and they oscillate. This is expected for 
two reasons. First,the biorthogonal Lanczos type methods do not minimize the residual norm. Second, 
if we assume residual norm minimization (e.g., in symmetric problems), the matrix polynomials of 
squared biorthogonal Lanczos methods are not always of spectral radius smaller than one (especially 
in the beginning of a cycle). This results in very high residual norms in the first few iterations. 
The modified SBiLQR exhibits smoother reduction of the residual norms as the iteration proceeds 
compared to the rest of the squared biorthogonal Lanczos methods. For restarted (orthogonal) Krylov 
subspace methods all direction vectors being formed are being used in every step and must be stored 
in the main memory. However, for the squared restarted biorthogonal, only a fixed small number of 
the direction vectors must be stored in the main memory. All the direction vectors are needed only 
when the approximate solution is computed. 
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