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Abstract 

GCR (Generalized Conjugate Residual) and Omin (Orthomin) are iterative methods for 
approximating the solution of unsymmetric linear systems. The S-step generalization of these 
methods has been derived and studied in past work. The S-step methods exhibit improved 
convergence properties. Also, their data locality and parallel properties are enhanced by forming 
blocks of s search direction vectors. However, s is limited (to s 5 5) by numerical stability 
considerations. The following new contributions are described in this article. The Modified 
Gram-Schmidt method is used to AT A-orthogonalize the s direction vectors within each S-step 
block. It is empirically shown that use of values of s, up to s = 16, preserves the numerical 
stability of the new iterative methods. Finally, the new S-step Omin, implemented on the CRAY 
C90, attained an execution rate greater than 10 Gjlops (Billion Floating Point Operations per set). 

Keywords: Iterative methods; S-step Orthomin; Modified Gram-Schmidt; Cray C90 

1. Introduction 

We consider a linear system of equations 

Ax=f (1) 

where A is a real unsymmetric matrix of size n. In this article we use modified 
Gram-Schmidt to orthonormalize the direction vector blocks in the S-step Omin (GCR) 
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(introduced in [S]). This new approach shows (empirically) that s can be extended up to 
16 without loss of numerical stability. The new methods have still attractive parallel 
properties. 

Several algorithms which improve the data locality for dense linear algebra problems 
exist for shared memory systems [ 12,141. These algorithms are coded using the Basic 
Linear Algebra Subroutines (BUS) [1,12]. Three different classes of BLAS exist: 
BLASl (based on single vector operations), BLAS2 (based on matrix times vector 
operations), BLAS3 (based on matrix times matrix operations). BLAS can be coded as 
high performance kernels on shared memory computers either with vector registers 
(BLASl and BLAS2) or local memory (or cache) (BLAS3). One important advantage of 
these algorithms over the standard ones is their low ratio of memory references over 
floating point operations. This allows efficient use of vector registers and local 
memories. It also enhances parallelism by reducing the need for frequent synchroniza- 
tions of the processors. 

In the area of iterative methods for solving linear systems, BLASl or BLAS2 module 
implementations consisting of one or more single vector operations have been studied in 
[lo-12,25,30]. The S-step iterative methods [6-8,16-181 can be expressed in terms of 
BLAS2 and BLAS3 operations. The S-step methods form (at each iteration) a block of s 
independent direction vectors using repeated matrix-vector products of the coefficient 
matrix with a single residual vector. Then the solution is advanced simultaneously using 
the s direction vectors. Compared to the standard methods the S-step methods have 
improved data locality properties and parallelism. However, s is limited to s I 5 due to 
numerical stability considerations. An alternative approach to the S-step methods is 
offered by the block methods. The block methods use many independent initial residual 
vectors and they can also be expressed in terms of BLAS2 and BLAS3 operations. 
However, finding several independent initial residual vectors is a very difficult task. 
Some representative recent references in this area are [5,22-241. 

The main goal of this work was to use the Modified Gram-Schmidt method to 
orthonormalize the direction vectors within each block of the S-step (GCR) Orthomin. 
The new methods have slightly worse data locality properties and slightly more 
operations than the S-step methods. However, the block size s can be increased (up to 
s = 16) without affecting the numerical stability of the method. Thus, the overall 
parallelism is enhanced. We studied the convergence and robustness of the new methods 
and implemented them on a 16 processor CRAY C90. We ran tests with a linear system 
arising in the discretization of a (Zdimensional) partial differential equation at a 
sustained execution rate greater than 10 GFlops. 

The following notation will be used throughout the article. The transpose of the 
matrix A will be denoted as AT. Lower case Greek characters will denote scalars or 
realfunctions and lower case English letters will denote vectors except for i, j,k,l,m,n,s 
which will denote positive integers. If the symmetric part of A (i.e., AT + A/2) is 
positive definite then the matrix A will be called definite; otherwise it will be called 
indefinite. We also call the linear system with an (in)de$nite coefficient matrix an 
(in)definite linear system. We define the minimal polynomial of a nonzero vector v 
with respect to matrix A to be the least degree manic polynomial qk(X) such that 
qk( A)v = 0. The lth power of the matrix A is denoted by A’. 
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The article follows the following structure. In Section 2, the orthogonal S-step 
methods are presented. In Section 3, the convergence and robustness of the new methods 
are discussed. In Section 4, an unsymmetric linear system arising in the discretization of 
a partial differential equation is presented. In Section 5, a parallel preconditioner 
(proposed in the past and used here) is outlined. In Section 6, the implementation of the 
new methods on a shared memory multiprocessor using BLAS is discussed. In Section 
7, the results of the parallel implementation are discussed. Section 8 contains a summary 
and conclusions. 

2. Orthogonal S-step GCR and S-step Omin 

Omin and GCR [13,27] are iterative methods which apply to unsymmetric definite 
linear systems. The S-step Orthomin and S-step GCR have been derived and studied in 
[8]. For s = 1, these methods are identical to Omin and GCR respectively. However, for 
s > 1 they are more powerful in terms of their convergence and parallel properties. 

In order to understand these S-step methods, we first outline an s-dimensional 
steepest descent method called the S-step Minimal Residual (MR) method. Let X, be an 
initial guess to the solution of (1) and let r, =f- Ax, be the initial residual. For 
i= l,..., S-step MR computes a block of direction vectors denoted by the matrix 

[ri,Ari,..., A”- ‘ri] (of dimension n X s) and uses them to update the solution vector 

xi+l =xi+ol!.ri+ . . . +tifA’-‘ri, 

where (wi are the steplengths that minimize I] ri+ , II2 over the affine Krylov subspace 

( 

s 
xi+ ~oljAj-‘ri:cxj scalarsand ri=f-Axi . 

j=l 1 

This method is theoretically equivalent to GMRES(s) [8]. S-step MR is not stable as s 
increases because of loss of orthogonality of the direction vectors used. However, it is 
useful in understanding other Krylov subspace iterative methods. 

For integers i,k and 1 I i,k, let ji = 1 for S-step GCR and ji = max(l,i - k + 1) for 
S-step Omin(k). In S-step GCR and S-step Omin(k), each iteration generates a block of 
s direction vectors, which are denoted by the matrix Pi = [ pf , . . . ,pf]. Here, unlike 
S-step MR, these blocks are created to be AT A-orthogonal. Pi is obtained from the 
column vectors [ri,Ari,...,A”-‘ri], by simultaneously AT A-orthogonalizing them 
against the preceding blocks of direction vectors ([pi’, . . . ,p,f]), for jj I j I i - 1. 
However, the direction vectors within each block (Pi) are not AT A-orthogonalized. The 
norm of the residual Ilri+ ,112 is minimized simultaneously in all s new direction vectors 
in order to obtain xi+ , [8]. 

Here, we propose the following modification to the S-step GCR and S-step Omin(k). 
At each iteration i, we apply the Modified Gram-Schmidt method (MGS) (see [3]) to 
orthogonalize the column vectors of the matrix AP,. This yields the orthogonal S-step 
methods. The orthogonal S-step GCR (Omin(k)) will be denoted by OSGCR 

(OSOmin(s,k)). 
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The following notation facilitates the description of the algorithm. 
. The vector zi = [a):, . . . , a;lT (of dimension s> are the steplengths that minimize 

11 ri+ ,112 over the affine Krylov subspace 

s 

xi + ccyjAp,‘: aj scalars . 

j= 1 

. For indices 1= 1 , . . . ,s and ji <j I i, & = [pj”‘), . . . ,~jl.~)lr are vectors (of dimen- 
sion s) of parameters used in orthogonalizing AP, against APj. 
For integers i,k and 1 < i,k, let ji = 1 for OSGCR and ji = max(l,i - k + 1) for 

OSOmin(s,k). We summarize OSGCR and OSOmin(s,k) in the following algorithm. 

Algorithm 1. OSGCR and OSOmin(s,k) 

Compute r, = f - Ax,. 
For i= l,... until convergence do 

1. Compute AP, = [ Ar,,A*r,, . . . ,Asril and set Pi = [ ri,Ari,. . . ,A”- ‘ril If (1 < i) 
then 
2. compute & = [(A’rJrAp!, . . . ,(A’rilTAp; >lT, where 1 = 1,. . . ,s and j = 
ii- I), - . . .i - 1 
3. AP, = AP, - C;:;( _ APj[($;_, 
4. Pi = Pi - c;:;(;_ &$3J;= , 
EndIf 
5. Apply MGS to the matrix AP, to obtain final AP, and Pi 
6. Compute LJ = [ r:Apf , . . . ,r~Ap,“]r 

7. ri+ I = ri - AP,cI~ 

8. xi+1 = xi + Pi% 
EndFor 

We note that the column vectors APj, for j = jci_ ,), . . . ,i - 1, are orthonormal. For 
s = 1 Algorithm 1 is the (GCR) Omin(k) algorithm, 

Remark 1. The following alternative computations are possible in Algorithm 1. 
(a) Step 7 can be replaced by direct computation of the residual ri+, = f - Axi+ ,. 

This may enhance the efficiency and robustness of the method for larger s. In our 
implementation we used this approach for s 2 8. 

(b) The computation of AP,. can be carried out directly if matrix vector products are 
faster than linear combinations in steps 3 and 4. We note that there are s completely 
parallel matrix-vector products. We did not use this approach in our implementation. 

We next display the storage and computational work for a single iterufion of 
Algorithm 1 in Table 1. Storage includes the matrix A and the matrices: 
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Table 1 

Number of vector operations for the j-th iteration of OSGCR and OSOmin(s,k) given in terms of n 

vops 

Stg 

DP~ 
Mv 

Lc 

OSGCR OSOmiu 

2(j+l)s 2(k+l)s 

(2j+ l)s* +3s miu([(2 j + l)s* + 3~1, [(2k + l)s2 + 3sl) 

[(4j+2jlr2 +2s] min([(4j+2)s2 +2ZI, [(4k +2)s2 +2sl) 

We only count vector operations on vectors of dimension (of the linear system) n. 
We use the following notation: 
- Vops (Vector operations); 
+ Dpr (Dot products); 
* Mu (Matrix times vectors); 
- Lc (Linear combinations); 
* Stg (Storage requirements for vectors besides the Matrix A). 

The number of dot products required to apply MGS to APj (step 5 of Algorithm 1) 
equals s(s + 1)/2. Updating APj and Pi then requires s(s - 1) additional vector 
operations for linear combinations. Counting the vector operations in the rest of the steps 
of the Algorithm 1 is an easier task and yields the totals in Table 1. 

3. Convergence properties 

In this section we discuss the main convergence results and the robustness of 
(OSGCR) OSOmin(s,k). 

It has been proved that S-step (GCR) Omin(k) (with 1 5 s,k) converges for unsym- 
metric definite linear systems and for a class of unsymmetric indefinite linear systems 
[8]. These results also apply to (OSGCR) OSOmin(s,k). Unlike Omin(k), which only can 
be applied to definite linear systems, S-step Omin(k) and therefore OSOmin(s,k) 
converges for at least the same class of linear systems for which GMRES(s) converges. 
For fixed s, the choice of the parameter k affects the convergence speed of OSOmin(s,k) 
(similarly to Omin(k)). However, the choice of the parameter s affects the convergence 
and parallel properties of the method. 

The main convergence theorem for (OSGCR) OSOmin(s,k) can be stated as follows. 

Theorem 1. Let 1 < s and assume that the degree of the minimal polynomial of r, is 
greater than s. Assume that for each iteration i = 1,. . . (in Algorithm 1) (a definiteness 
condition) rT Air, + 0 holds for some j (1 I; j < s). Then (OSGCR> OSOmin(s,k) and 
GMRES(s) converge to the solution. 

Proof. Given in [8] 0 

The condition rTAiri # 0 for some j (1 zz j s s), provides that one of the steplengths 
oi is not zero and thus progress towards the solution is made at the ith iteration of 
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Algorithm 1. Following this theorem we can describe the cases for which Algorithm 1 
may break down. 

Remark 2. The conditions of Theorem 1 can be violated as follows. 
(a) This is a harmless violation. The degree of the minimal polynomial of the 

residual, sl, is less than s. This is detected in step 5, because the vectors AP, are then 
linearly dependent. Algorithm 1 converges in one iteration. However, in the implementa- 
tion s must replaced by sl in steps 6, 7, 8. OSOmin(sl,k) also converges in this case. 

(b) The violation of the definiteness condition in Theorem 1 is detected by using a 
parameter (Count(a)> that counts the number of nonzero steplengths (in step 6). If 
Count(a) = s, then Algorithm 1 is unable to advance to the next iteration. In this case, 
the method must be restarted with a different initial solution or a larger s. 

We next present examples of contrived linear systems to illustrate the convergence 
properties of the methods. In all the matrix examples in this section unlabeled entries 

are equal to zero. The following example makes both GMRES(s) and OSOmin(s,k) 
break down for s less than the dimension (n) of the system [20,4,15]. 

Problem I. Let the linear system matrix (of dimension n) be 

and let the right hand side be [l,O, . . . , OIT. Then for x,, = 0, rTAiri = 0 for all j, with 
1 I j < n. This causes both GMRES(s) and OSOmin(s,k), with s < n, to break down. 
For OSOmin(s,k) this breakdown is detected by checking if (Y i = 0. A remedy for this is 
to restart the method (with the current residual T-J and applyTn a preprocessing stage) a 
single step of the Conjugate Residual method (e.g., expressed by Algorithm 1 as the 
OSOmin(l,l)) applied to the normal equations and then continue with OSOmin(s,k). 
The normal equations formulation of this problem makes the coefficient matrix (ATA) 

equal to the identity and thus one step of OSOmin(l,l) would find the solution. 
The following theorem concerns the convergence of OSOmin(s,l) for symmetric or 

skew-symmetric linear systems. 

Theorem 2. Let s 2 2 and assume that the degree of the minimal polynomial of r, is 
greater than s. Furthermore, assume that either A is (skew-jsymmetric or A = I - N, 

where N is skew-symmetric. Then (OSGCR) OSOmin(s,k) converges to the solution. 

Also, OSOmin(s,l) is equivalent to OSGCR and thus it converges in at most [n/s] 
iterations. 

Proof. Given in [8] 0 
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Theorem 2 shows the advantage of OSOmin(s,l) (a truncated method) over GMRES(s) 
(a restarted method). The second method may break down for skew-symmetric linear 
systems, as shown in the following example. 

Problem 2. Let the linear system (skew-symmetric) matrix of dimension n be 

1 
0 

-1 
1 
0 1 

-1 0 
-1 

(3) 

and the right hand side [l/\/2,0,. . . , O,l/ JT]‘. This linear system arises naturally in 
discretizing the boundary value problemi 

with boundary conditions e(O) = (r(l) = 0, when p + 0. For problem 2 with initial 
solution equal to zero, GMRES(s) does not converge unless s = n 141. For this problem 
OSOmin(2,l) converges in at most [n/2] iterations. 

Remark 3. Although we have not made a theoretical study of the error properties of 
Algorithm 1 we make two observations: 

(a) The modified Gram-Schmidt method error is proportional to the condition 
number of matrix AP, (Cond( APi)) [3]. We have not estimated the Cond( AP,) in our 
tests. However, it did not affect the accuracy of the solution for an ill-conditioned 
problem that we tested OSOmin(s,k) (with s I 16). 

(b) The linear system can be scaled (by the maximum absolute value of the (row) 
column entries) to achieve (TOW) column equilibration [31]. This scaling modifies the 
matrix entries so that they do not exceed one, so past errors do not accrue due to 
matrix-vector products (in step 1). This is not a prohibitive task for sparse matrices. 
Also, equilibrated diagonal linear systems are solved in one iteration of Algorithm 1. 

We next consider an ill-conditioned linear system and test the robustness of 
OSOmin(s,k) for several values of s (1 I s < 16). This problem has been used by H.F. 
Walker to test the robustness of GMRES(32) [28]. 

Problem 3. Let the linear system matrix of dimension n = 100 be 

2 

(4) 

99 
0 

where (Y = 103, the right hand side is [l,l,. . . , llT and x0 = 0. We ran OSOmin(s,k) 
with (s,k) = (1,8), s = 2, 4, 8, 16 and k = 1. Each iteration of Algorithm 1 requires s 
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Fig. 1. Convergence of true error for Problem 3. 

matrix-vector products. The plotting of the error versus the number of matrix-vector 
products is a good quick way to compare the various methods for convergence speed. 
The log,, of the Euclidean norm of the true (residual) errors in terms of the number of 
matrix-vector products are plotted in Figs. 1 and 2. It can be seen that the methods’ 
convergence is unaffected for up to s = 16. For s = 1 the method broke down for 
k < 26. The linear system was not equilibrated (as described in Remark 2). Using 
OSOmin(s,k) without equilibration runs the risk of magnifying errors (in carrying out 
step 1). Despite this and the large condition number the method remains robust. 
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Fig. 2. Convergence of residual error for Problem 3. 
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4. An unsymmetric large sparse linear system 

We have discretized a partial differential equation boundary value problem on a 
square region by the method of finite differences. This is a standard elliptic problem 
which can be found in [19] and the right hand side function is constructed so that the 
analytic solution is known. 

Problem 4. 

-(P4J&, - (o+& + (NC, + (UJ)5* + HJ =x7 

where 

(6,&) E a= (071) x (04, 

p(S,&) =e+152,0(5,&) =eS1S237(51&) =P.(6, +5*), 

*(El &) = 5,e5152 sin( nE1) sin( nSz), 

with Dirichlet boundary conditions and x(.$,,.!&) the corresponding right hand side 
function. By controlling 3 and p, we could change the degree of nonsymmetry of the 
problem. We chose 4 = 50.0, p = 1.0. 

If this problem is discretized using the centered difference scheme on a uniform 
n, x ny grid (where n, = n,) with mesh size l/(n, + 11, we obtain a linear system of 
equations 

of size n = n’,. If we use natural ordering of the grid points, then the matrix A is a block 
tridiagonal matrix of the form 

A= [C,_,,D,,B,], 1 <k<n,, (5) 

where C,_ , , D,, B, are matrices of size n,; and C,, = B,x = 0. The matrices C, _ , , B, 
are diagonal matrices and D, are tridiagonal matrices. The matrix is large. For example, 
if n, = 100, then the dimension of A is n = 104. 

5. Preconditioning 

The convergence rate of the Krylov subspace methods (such as OSGCR, OSOmin) is 
closely related to the condition number of the system matrix. Matrices with high 
condition numbers may lead to slow convergence rates. A strategy which is often 
implemented in conjunction with iterative methods is to apply a preconditioner which 
transforms the original system into one with a matrix of a smaller conditioner number or 
with clustered eigenvalues. The transformed system is then solved by the iterative solver 
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at a faster convergence rate. Let K be the right preconditioning matrix. System (1) is 
transformed to 

(AK)K-‘x=f, 

which is then solved by the iterative solver. 
Either K is a close approximation to the inverse of A i.e. 

(6) 

or AK has clustered eigenvalues. The preconditioner K must be easily invertible, so that 
the system K- ’ x = b is easy to solve. In combining right preconditioning with 
Algorithm 1, we only need to change step 1, as follows: 

Compute P. = [Kr,,K(AK)ri,. . . ,K(AK)“-‘r,], AP, = 

[A&,~AK)~~, ,..., CAK~~-J. 

We choose the ILU factorization preconditioner [26]. The basis for the ILU factoriza- 
tion method is that the matrix A is decomposed into upper and lower triangular matrices 
U and L such that A = LU + A, where K - ’ = LU and A is an error matrix. Also, we 
assume that if Ai,,i, = 0, then both Ui,,i, and Lil,i, = 0. In other words, L and U have 
the same sparsity patterns as A. This is the ILU(0) method. For more details see [19,26]. 

Although ILU preconditioning can improve the convergence rate of the iterative 
solvers considerably, the preconditioner itself may have very slow execution rates if not 
implemented properly on a vector-parallel computer. This is due to the following fact. 
Let L and U be the incomplete LU factors of A. Then solution of the two triangular 
systems Ly = b and Ux = y requires back-solving, which is a serial operation. 

Let us now consider ILU(0) for the block tridiagonal A of our model problem. This 
can be implemented in vector mode by using a Neumann series expansion, proposed by 
van der Vorst in 1982 [26]. The original problem can be scaled so that the diagonal 
entries of L and U are 1. Suppose E is the matrix consisting of the subdiagonal of L 

(Li,,i,_ 1> and F is the matrix consisting of the remaining subdiagonals Li,,i2, i, < i, - 1. 
Then L = I + E + F. So the system to be solved is: 

(Z+E+F)y=b 

or, in block form 

(8) 

(z+E,)Yk=bk-Fk-,Yk-,. (9) 

where Ekr Fk are the diagonal and subdiagonal blocks of L and b, and yk are the 
corresponding block subvectors. Assuming that the norm of E is small relative to the 
norm of I, this can be expanded via a Neumann Series, 

y~=(Z+E,)-‘(b,-F,_,y,_,)=(Z-E,+E,Z-~~+...)(b,-F,_,y,_,). 

(10) 

The power series is usually truncated after the second term. The backward solution 
for U is obtained similarly. Note that one of the conditions for use of the Neumann 
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CPU0 

CPU1 

---I Region1 

--r---l Region2 
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. 

. 

CPUm-1 i-- 
Region, 

Fig. 3. ParaIlel execution of ILU for Problem 4. 

series is that the norm of E is small relative to 1. This will be the case for diagonally 
dominant systems, but may break down for systems that are not diagonally dominant. 

The Neumann expansion leads to vector operations on blocks of length = n,, where 
n, is the number of gridpoints in the x direction of the solution mesh. The vectorizable 
preconditioning shows substantial improvement over serial preconditioning on vector 
processors. However, no parallelism exists because there is a recurrence (of order 1) in 
the computation of the different vector blocks. That is, block k uses the result of block 
k- 1. 

A method for parallelizing the ILU preconditioner was introduced by Radicati di 
Brozolo and Robert in 1988 [21]. It was proposed to partition the preconditioned matrix 
into a number (m) of overlapping submatrix regions. Each region consists (of a 
contiguous index sequence) of submatrix blocks of the type [C,_ , , D, , Bk]. The loss of 
connection between the regions is partially compensated for by introducing smaller 
overlapping region segments. Each submatrix region is then executed in parallel on m 
processors. After the back solution step is carried out (independently in each submatrix 
region) the overlapped values between the separate regions are set equal to the average 
of that determined in each region. It is found ([21]) that this overlapping strategy gives 
better performance than the nonoverlapping one. Here, we use an overlapping of a single 
submatrix block of the type [C,_ , ,D,,B,], between two successive parallel regions. The 
parallel implementation of this technique, on m processors (CPVs), is illustrated in Fig. 
3. 

If m = 1, this preconditioner is exactly the same as the vectorized ILU precondi- 
tioned method. If m > 1, this type of preconditioning is slightly less effective at 
reducing the condition number because of the loss of connection between the submatrix 
regions. In general, the effectiveness of the preconditioner is reduced as m becomes 
larger, but the performance on parallel processors improves. 
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6. The multi-processor implementation 

The final numerical experiments (in single user mode) were executed on a CRAY C90 
system at Gray Research, Inc.. This system has 16 CPUS and 256 million 64bit words 
of shared memory. In the CRAY C90, each CPU has two vector pipelines, with each 
pipeline having one floating-point functional unit for addition and one for multiplication. 
Thus a CRAY C90 CPU can produce four floating-point results per clock period if 
addition and multiplication operations can be chained together. The constructs utilized 
by linear solvers and implemented in BLAS routines take advantage of this feature. The 
CRAY C90 has a clock period of 4.167 nanoseconds giving a peak performance of 
959.9 Mflops per CPU. 

Each CPU has eight vector registers (each 128 words long) and four ports to memory. 
In three-port vector mode, during any given clock period there can be two reads from 
memory and one write to memory. The fourth port is used for other I/O purposes or for 
the instruction buffers. To support the dual pipelines in the vector unit, each port is 128 
bits (i.e., two words) wide. A fully configured 16 CPU system has a memory bandwidth 
of 246 Gbytes/sec. 

The CRAY C90 operating system is UNICOS, an extended version of UNIX * that 
supports optimizing compilers and the autotasking feature for parallelization. Autotask- 
ing automatically detects and exploits parallelism in a program. The user can also insert 
compiler directives to provide enhanced parallel execution. For example, directives can 
be used to tell the compiler when potential dependencies inhibiting parallel code 
generation can safely be ignored. 

Finally, the CRAY C90 provides highly optimized scientific mathematics libraries, 
including efficient implementation of BLAS (1, 2, 3) ([1,12]). Let x and y be vectors 
and cx be a scalar. BLASl perform vector-vector operations such as: 

Y+~X+Y (saxpy) 

The BLASl sdot, sscal, scopy were also used in the implementation. The BLAS2 
perform matrix-vector operations including the rank-one update (used in the implemen- 
tation) of the form 

B=axyT+B (sger), 

where B is matrix of dimension n X s, OL is a scalar, x is a vector of dimension n and y 
is a vector of dimension s. BLAS3 perform matrix-matrix operations and are designed 
to take advantage of systems with cache or local memories. The only BLAS3 used in the 
implementation was scopy2, which copies a matrix into another matrix (needed in step 1 
of Algorithm 1). Scopy2 enhances the execution rate of the copy operation for problem 
sizes that exceed the capacity of the CRAY C90 main memory. The performance of 
BLAS used is discussed below. 

* UNICOS and CRAY C90 are trademarks of Cray Research, Inc. and UNIX is a trademark of UNIX 
Systems Laboratories, Inc. 
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___------_-_-_-_-___--__--- 

CPU,_1 G-1 Dm I 
Fig. 4. Parallelization of the matrix-vector product on m CPUs. 

Parallelizafion of the BLAS on a system with m CPUs was implemented by 
partitioning the vectors of dimension n into m equal subvectors and making m 
independent BLAS calls. Parallelization of the ILU step was discussed in the previous 
section and illustrated in Fig. 3. Parallelization of the sparse matrix-vector product (for 
system size n = m2> was implemented by simply partitioning the matrix and vector 
along the dimension n as illustrated in Fig. 4. 

7. Results 

In this section we describe the results of the implementation on the CRAY C90 of 
OSOmin(s,k) applied to solve Problem 4. For the runs described here we used the 
stopping criterion 

IlrJl2 
m s 1o-6 0 

and the initial solution vector 

x(i) = 0.05 * mod (i,50) 

and dimension n, = 512. The matrix was equilibrated by columns in the unprecondi- 
tioned case. We executed OSOmin(s,k) with (s,k) = (1,4) (i.e. the standard Omin(4)) 
and (s,k) = (s,l) for s = 2,4,8,16. Choice of k = 4 is (empirically) the best (in terms of 
number of iterations) for OSOmin(l,k). Similarly, the choice of s = 2 is the best for 
OSOmin(s,l), with s 2 2. Problem 4 is definite so the choice of s = 1 can be used for 
convergence. Here, it must be noted that the choice of s is related both to the 
convergence and to the parallelism of the methods. The method, applied to Problem 4, 
converges for any s, 1 5 s < 16. However, there are more difficult problems [29] which 
require s = 16 for convergence. 
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Table 2 
OSOmin(s,k) single processor performance in Mflops for PDE problem 

Mflops/% 
Matvec 

SaxPY 
Inner products &lot) 
Linear comb. (sger) 

ScoPY 
ILU preconditioner 

Whole code: 
Unpreconditioned case 

s=16,k=l s=8, k=l s=4,k=l s=2, k=l s=l,k=4 

691/7 701/13 702/18 703/25 706/17 
749/l 759/2 759/4 760/5 781/7 

860/30 869/27 865/24 859/20 861/18 
816/60 79Q/55 742/48 705/38 613/51 

--/l --/2 --/3 ---/5 --/4 
470 470 470 470 476 

817 777 733 688 664 
768 707 647 597 600 

Percentages are for the Unpreconditioned case 

Single CPU performance results for the preconditioned and unpreconditioned prob- 
lem and for the constituent operations are listed in Table 2. Results are in millions of 
floating point operations per second (Mflops). The percent of time used by each type of 
operation in the unpreconditioned case is also listed. The algorithm is dominated by 
linear combinations, implemented using the BLAS2 sger. Performance of sger is seen to 
degrade as the number of columns (s) decreases to 1. Nevertheless, since the peak single 

Table 3 
Speed-ups for constituent operations within the OSOmin(s,k) code 

S k 4 urocessors 8 processors 16 processors 

Inner products 16 1 4.0 
8 1 3.9 
4 1 3.9 
2 1 3.8 
1 4 3.8 

Linear comb. 16 1 4.0 
8 1 3.9 
4 1 4.0 
2 1 4.0 
1 4 3.9 

SaxPY 16 1 4.0 
8 1 4.0 
4 1 4.0 
2 1 4.0 
1 4 3.9 

ScoPY 3.9 
Matvec 3.8 
ILU preconditioner 3.8 

7.7 13.4 
7.6 12.8 
7.2 11.8 
7.0 10.1 
6.8 10.2 

7.9 14.5 
7.8 14.3 
7.7 14.0 
7.6 12.4 
7.7 13.1 

6.9 10.8 
6.8 10.6 
6.5 10.0 
6.3 9.0 
6.3 9.2 

7.4 12.0 
6.9 10.6 
7.3 12.3 
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Table 4 
Wallclock time, iterations and speed-up for the unpreconditioned problem 

s k 

Wallclock seconds (iterations) 
OSOmin(s,k) 16 1 

OSOmin(s,k) 8 1 

OSOmin(s,k) 4 1 

OSOmin(s,k) 2 1 

Omin(k) 1 4 

speed-up 
OSOmin(s,k) 16 1 
OSOmin(s,k) 8 1 
0SOminh.k) 4 1 
0SOmih.k) 1 4 
Omin(k) 1 4 

1 processor 4 processors 

61.24 14.91 

(75) (73) 
33.16 8.58 

(139) (139) 
24.10 6.30 

(314) (314) 
19.56 5.41 

(715) (720) 
21.60 6.08 

(1076) (1076) 

1.00 4.1 I 
1.00 3.87 
1.00 3.82 
1.00 2.99 
1.00 3.55 

8 processors 16 processors 

7.85 4.34 
(74) (73) 

4.38 2.55 
(138) (139) 

3.43 2.09 
(313) (313) 

3.11 2.18 

(717) (723) 
3.55 2.45 

(1076) (1076) 

7.80 14.13 
7.57 13.00 
7.03 11.53 
4.60 6.19 
6.08 8.83 

CPU performance for the CRAY C90 is 960 Mflops, the overall results demonstrate 
efficient vector performance for the OSOmin(s,k) algorithm. 

Table 3 shows the parallel performance for the constituent operations, listed as 
wall-clock time and speed-ups obtained using 4, 8 and 16 CPUs. For scopy, matrix-vec- 
tor, and the ILU routine, speed-ups were independent of s. For inner products (sdot), 
linear combinations (sger) and saxpy operations, the speed-ups improved as s increased 

60 

0 2.5 5 7.5 10 12.5 15 

Number of CPUs 

Fig. 5. Run-time for Problem 4 (Unpreconditioned).-x- (s,k)= (1,261, - = - (s,k) = (2,1), -* - 
(s,k)=(4,l),-+-_(s,k)=(8,1),-O-~s,)=(l6,l). 
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Number of CPUs 

Fig. 6. Speed-up for Problem 4 (Unpreconditioned). 

from 2 to 16 with the OSOmin(l,4) results falling between the OSOmin(2,l) and 
OSOmin(4,l) results. 

Wallclock-time and speed-up results for the unpreconditioned problem are given in 
Table 4 and illustrated in Figs. 5 and 6. The best absolute performance for this problem 
was achieved with OSOmin(4,l) using 16 CPUs. For the parallel preconditioned 
implementation, the number of parallel overlapped blocks m was chosen to be equal to 

Table 5 
Wallclock time, iterations and speed-up for the preconditioned problem 

s k 

Wallclock seconds (iterations) 

1 processor 4 processors 8 processors 16 processors 

SOmin(s,k) 

OSOmin(s,k) 

0SOmixh.k) 

OSOmin(s,k) 

Omin(k) 

Speed-up 
OSOmin(s,k) 
0SOmih.k) 
OSOmin(s,k) 
OSOmin(s,k) 
Omin(k) 

16 1 22.08 6.20 3.44 2.22 
(25) (26) (26) (27) 

8 1 12.95 3.78 2.17 1.46 
(40 (46) (45) (45) 

4 1 8.73 2.84 1.86 1.29 
(83) (91) (98) (94) 

2 1 :z, 2.17 1.43 1.16 
(161) (161) (176) 

1 4 9.25 3.09 2.01 1.49 
(340) (364) (368) (365) 

16 1 1.00 3.56 6.43 9.95 
8 1 1.00 3.43 5.97 8.87 
4 1 1.00 3.08 4.70 6.79 
2 1 1 .oo 3.22 4.88 6.04 
1 4 1.00 2.99 4.60 6.19 
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Fig. 7. Run-time for Problem 4 (Preconditoned). 
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the number of processors of C90. Wallclock-time and speed-up results for the precondi- 
tioned problem are given in Table 5 and illustrated in Figs. 7 and 8. The best absolute 
performance for this problem was achieved with OSOmin(2,l) using 16 CPUs. The fact 
that we observe speed-ups higher than the number of CPUs is due to the slight variation 
in the number of iterations for convergence in the parallel execution of the algorithm. 

8. Summary and conclusions 

We presented an improved version of S-step methods for unsymmetric linear systems 
in which the s direction vectors within each S-step block are AT A-orthogonalized using 

8 

OF. 
0 2.5 5 7.5 10 12.5 15 

Number of CPUs 

Fig. 8. Speed-up for Problem 4 (Preconditoned). 
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the Modified Gram-Schmidt technique. This permitted larger values of s (up to s = 16) 
than in the original methods, yielding more robust algorithms. With larger s values, the 
number of iterations is reduced with more work being done in each iteration, a situation 
that makes more efficient use of multiple processors. The additional work from the MGS 
orthogonalization is compensated by enhanced parallel performance (i.e., higher speed- 
ups) to obtain algorithms with multiple processor performance comparable to Omin. For 
the large and sparse problem analyzed, the best performance on the 16 CPU CRAY C90 
was obtained with s = 4 (unpreconditioned) or s = 2 (preconditioned). However, there 
are indefinite systems [29], where s = 16 must be chosen to obtain convergence. Here, 
we demonstrated that the OSOmin(s,k) algorithm scales to 16 processors with good 
vector and parallel performance. 

In general one can determine the best choice of s and k for convergence using a 
small dimension n, because the convergence properties of the method depend on the 
spectral properties of the linear system [15,20]. The more difficult the linear system the 
larger the s and k will be required. Then, one must use s CPUs in executing 
OSOmin(s,k) to solve the problem (of the large dimension) in order to achieve high 
efficiency on the parallel system. Finally, as observed in Remark 3, OSOmin(s,k) must 
always be applied with a good preconditioner or in conjunction with column(row) 
equilibration of the coefficient matrix. 
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