
IEEE COMMUNICATIONS LETTERS, VOL. 12, NO. 5, MAY 2008 353

Spectrum Load Balancing for Medium Access in
Cognitive Radio Systems

A. T. Chronopoulos, Senior Member, IEEE, M. R. Musku, Member, IEEE,
S. Penmatsa, Member, IEEE, and D. C. Popescu, Senior Member, IEEE

Abstract— In this work, the problem of spectrum allocation
in cognitive radios is shown to be similar to the load balanc-
ing problem in distributed computer systems. Spectrum Load
Balancing (SLB) algorithm based on the non-cooperative load
balancing problem in computers is proposed, and is applied to a
cognitive radio system. The capability of SLB to support QoS in
the presence of other competing cognitive networks is evaluated
via simulations and compared with the existing Spectrum Load
Smoothing (SLS) algorithm. SLB is more efficient than SLS and
it provides a Nash Equilibrium.

Index Terms— Spectrum allocation, game theory, load balanc-
ing.

I. INTRODUCTION

FLEXIBLE and dynamic spectrum usage requires an intel-
ligent medium access, especially in the face of QoS sup-

port. Radios designed for efficiently using a shared spectrum
and at the same time not causing significant interference to the
incumbent (primary license holding) radio systems are referred
to as Cognitive (spectrum agile) radios [1]. They identify radio
spectrum when it is unused by the incumbent radio system and
use this spectrum in an intelligent way based on spectrum ob-
servation. A method referred to as Spectrum Load Smoothing
(SLS) to coordinate and optimize the usage of radio spectrum
is introduced in [2], [3]. SLS uses an opportunistic spectrum
usage framework which causes no interference to primary
users of the spectrum (either because the primary user is not
currently active, or because it is unlicensed spectrum), and is
applied to TDMA like channels which are shared by multiple
devices. The principle of SLS was derived from the idea of
Waterfilling [4], a well known method in the field of multiuser
information theory and communications engineering.

We note that the problem of optimizing the usage of
radio spectrum shared by different devices in at least one
of the following dimensions: space, time, frequency, carrier,
spreading code is similar to the load balancing problem in
the computers [5]. The load balancing problem in computers
is stated as follows: given a large number of jobs, find the
allocation of jobs to computers optimizing a given objective

Manuscript received November 21, 2007. The associate editor coordinating
the review of this letter and approving it for publication was M. Saquib. This
work was supported in part by NSF grant CCR-0312323, and was presented
in part at the 2nd International Conference on Cognitive Radio Oriented
Wireless Networks and Communications - CrownCom 2007.

A. T. Chronopoulos and M. R. Musku are with the University of Texas at
San Antonio, TX 78249 (e-mail: atc@cs.utsa.edu).

S. Penmatsa is with Southern Arkansas University, Magnolia, AR 71753.
D. C. Popescu is with the Dept. of E.C.E., Old Dominion University, VA

23529.
Digital Object Identifier 10.1109/LCOMM.2008.071968.

function. In this work, we develop an algorithm for spectrum
load smoothing in the time domain based on a non-cooperative
game theoretic load balancing problem described in [5].

II. SPECTRUM LOAD SMOOTHING AND LOAD BALANCING

First, we outline SLS ([2], [3]) in time domain for a single
fixed frequency. Also, the frame structure is fixed and SLS
is applied once per frame by each requesting device. SLS
allocates (time) lengths on n (time) slots to m (competing)
devices over several iterations per frame (in round robin mode)
as follows. Each slot has a (total) fixed slot length and the
sum of its allocated lengths cannot exceed the slot length.
The aggregate slots length is sufficient to accommodate all the
devices’ requirements. For every frame, each device considers
the available slot length (remaining from previous iterations)
and tries to get a portion for its requirement. The goal is to
leave the slots at approximately the same load level (where
load is the allocated slot length).

Remark: The time complexity of SLS algorithm is O(n ×∑m
i=1 iteri) where n is the number of slots, m is the number

of devices, and iteri is the number of iterations taken by
device i = 1, ...,m for SLS to converge for a single frame.
For each frame, the average complexity per device is O(n ×
iteravg), where iteravg =

∑m
i=1 iteri/m.

In a distributed computer system consisting of n heteroge-
neous computers shared by m users [5], the goal of each user
is to find an allocation of her/his jobs on the computers so that
the average response time of her/his own jobs is minimized.

From the description of the preceding two systems, we note
that the spectrum load smoothing in time domain is analogous
to the load balancing in distributed system of computers [5].
The time slots of the channel in which the devices transmit
their data can be thought as computers and the devices which
require portions of the time slots can be thought as users.
We replace ‘computers’ by ‘time slots’ (or simply ’slots’)
and ‘users’ by ‘devices’ in the load balancing model. We
then formulate the problem for spectrum allocation as a load
balancing problem in analogy to [5].

Problem Statement: Let us denote by (1) µi (i = 1, ..., n)
the length of each slot, (2) φj the length of the time required
by device j (j = 1, ...,m), (3) sji (0 ≤ sji ≤ 1) the fraction
(of time), such that the term sjiφj represents the time length
assigned to device j in slot i, (4) sj = [sj1, sj2, ..., sjn]T

(where T is the transpose operator) (called the load balancing
strategy of device j) the fractions of time lengths of all the
slots occupied by device j.

1089-7798/08$25.00 c© 2008 IEEE

354 IEEE COMMUNICATIONS LETTERS, VOL. 12, NO. 5, MAY 2008

The total time length that all the devices occupy in slot i
is

∑m
j=1 sjiφj . Thus, the total amount of unused time in slot

i is

Fi(s) = µi −
m∑

j=1

sjiφj (1)

To achieve load balancing each device j must calculate the
fraction sji so that Fi(s) is maximized subject to the following
constraints on (1) (analogous to [5]):

sji ≥ 0,

n∑
i=1

sji = 1,

m∑
k=1

skiφk < µi; i = 1, ..., n (2)

The reasons are: (i) the fraction cannot be negative, (ii) for
user j, the sum of fractions in all the slots should equal 1,
(iii) the sum of all allocations in a slot cannot exceed the slot
length.

Maximizing Fi(s) in slot i is equivalent to minimizing∑n
i=1 sji/Fi(s). Therefore optimization over all slots implies

that

Dj(s) =
n∑

i=1

sji

µi −
∑m

j=1 sjiφj
(3)

must be minimized. We consider this formulation to make
use of the related existing game theory [5]. In particular, this
allows the proof of fairness guarantees.

Therefore, here the goal of each device j can thought as
selecting the strategy s so that the payoff function Dj(s) is
minimized. Also note that (3) is similar to the function to be
optimized in load balancing problem in [5]. We formulate this
problem as a non-cooperative game among devices assuming
that the devices are selfish. In a non-cooperative game for
spectrum allocation each device (player) with a requirement
of φj determines its strategy profile sj in order to minimize
its corresponding payoff Dj(s). The optimization problem
associated with device j can be described as follows:

min
sj

Dj(s); subject to the constraints in (2) (4)

Nash equilibrium is defined as the strategy profile for which
every device’s load balancing strategy is a best reply to other
devices’ strategies. This best reply for a device will find the
minimum of the payoff function given the strategies of the
other devices. We need to determine the strategy profile of
device j which must be optimal with respect to the other
devices’ strategies. The solution of the optimization problem
in (4) and the algorithm for calculating the optimal solution
(best reply algorithm) and finding the Nash equilibrium was
given in [5].
Best Reply Algorithm (Device-j)

Input: Available slot lengths: µj
1, µ

j
2, ..., µ

j
n; Total require-

ment of device: φj ; Output: Fractions: sj1, sj2, ..., sjn

Initialize k = n

1) for i = 1, 2, ..., n do
Obtain the length of free slot available µj

i

µj
i ← µi −

∑m
l=1,l �=j sliφl

2) Sort the slots in decreasing order of their lengths avail-
able (µj

1 ≥ µj
2 ≥ ... ≥ µj

n)

3) t ← (
∑n

i=1 µj
i − φj)/(

∑n
i=1

√
µj

i)

4) while (t ≥
√

µj
k) do

sjk ← 0
k ← k − 1
t ← (

∑k
i=1 µj

i − φj)/(
∑k

i=1

√
µj

i)
5) for i = 1, 2, ..., k do

sji ← (µj
i − t

√
µj

i)
1
φj

6) Allocate in each slot i = 1, 2, ..., n
sjiφj , j = 1, 2, ...,m

In order to obtain the equilibrium allocation, we need an
iterative algorithm where each device updates his strategies (by
computing his best response) periodically by fixing the other
devices’ strategies. The devices iteratively apply the best reply
algorithm to compute the Nash equilibrium as shown below.
SLB Algorithm
Each device j = 1, . . . , m performs the following steps in
each iteration:

1. Receive a message containing the current strategies of all
other devices.

2. If the message indicates a termination, then broadcast the
termination message and EXIT.

3. Update the strategies (sjiφj) by calling the Best Reply
algorithm.

4. Check if the desired error norm is reached.
5. Broadcast the updated strategies and the error norm.
The algorithm is executed during the coordination period

of each frame assuming that each device has received the
allocations of all other devices before starting its allocations
in the current frame as in the case of SLS. Otherwise, the
less accurate allocations of the last frame are considered. The
broadcast is implemented via in a base station in a cellular
network or by a broadcast algorithm in ad hoc networks.

Remark: (a) The time complexity of the best reply algorithm
is O(n log n) [5]. (b) The time complexity of SLB algorithm
is O(m × n log n × iter) where n is the number of slots, m
is the number of devices, and iter is the number of iterations
taken by the algorithm to converge to the Nash equilibrium.
We note that iter is the same for all devices unlike SLS.

III. SIMULATIONS

In this section, we compare the spectrum load balancing
(SLB) introduced in the section above with the spectrum load
smoothing (SLS) algorithm based on reservation [3] in terms
of the achieved throughput. The normalized throughput Θj(n)
represents the share of capacity a device j demands in frame-
n, and is defined in [3]. The simulations were performed using
Matlab. It is assumed that there are four devices (users) in
the system and a frame structure of four time slots with a
maximum load capacity of 0.8 is considered as in [3]. The
remaining capacity is left unallocated to enable the additional
SLB using devices or legacy devices. The maximum load level
is respected by all devices and they abort their allocations if
it is exceeded. The SLB is achieved over the complete frame.

Fig. 1 shows the requested allocation (frame 0) and the
allocations at frames 1, 26 and 75 of the SLS iteration. Fig. 2
shows the requested allocation (frame 0) and the allocations
at frames 1, 26 and 75 of the SLB iteration. Device-j, (j =
1, 2, 3) share the medium during the initial frame-0 and their
demanded allocations are not coordinated, i.e. they overload
the first time slot leading to a shortened observed allocation for

CHRONOPOULOS et al.: SPECTRUM LOAD BALANCING FOR MEDIUM ACCESS IN COGNITIVE RADIO SYSTEMS 355

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

slots

a
m

o
u

n
t

o
f

sl
o

t
o

cc
u

p
ie

d

device 1
device 2
device 3

(a) frame 0 (requested)

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

slots
a

m
o

u
n

t
o

f
sl

o
t

o
cc

u
p

ie
d

device 1
device 2
device 3

(b) frame 0 (observed)

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

slots

a
m

o
u

n
t

o
f

sl
o

t
o

cc
u

p
ie

d

device 1
device 2
device 3

(c) frame 1

(d) frame 26

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

slots

a
m

o
u

n
t

o
f

sl
o

t
o

cc
u

p
ie

d
device 1
device 2
device 3

(e) frame 75

Fig. 1. SLS Observed at frames 0, 1, 26 & 75

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

slots

a
m

o
u

n
t

o
f

sl
o

t
o

cc
u

p
ie

d

device 1
device 2
device 3

(a) frame 0 (requested)

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

slots

a
m

o
u

n
t

o
f

sl
o

t
o

cc
u

p
ie

d

device 1
device 2
device 3

(b) frame 0 (observed)

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

slots

a
m

o
u

n
t

o
f

sl
o

t
o

cc
u

p
ie

d

device 1
device 2
device 3

(c) frame 1

(d) frame 26

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

slots

a
m

o
u

n
t

o
f

sl
o

t
o

cc
u

p
ie

d

device 1
device 2
device 3

(e) frame 75

Fig. 2. SLB Observed at frames 0, 1, 26 & 75

device-2 and no allocation for device-3 as depicted in Fig. 1
and Fig. 2, both in the case of SLS and SLB. During this frame
the observed throughput of both the devices-j (j = 2, 3) is less
as seen from Fig. 3. The SLB leads to mutually coordinated
output of the demanded allocations during frame-1, although
in a different pattern from the SLS as seen in Figs. 1 and 2.

Device-4 initiates its transmission in frame-25, demanding
a share of 0.2 from the capacity. This leads to a non-
coordination among the devices and a decrease in throughput
of all the devices using SLS, but in SLB, since the demanded
allocations is divided into parts and allocated in the same
step. This effect does not occur as it is seen in Fig. 3. All
the devices follow SLB and redistribute their allocations in
a coordinated way and reach a steady point of interaction
which is the Nash equilibrium of the game. At frame-50,
device-4 terminates its transmissions, and this results in the
re-distribution of allocations as seen in Fig. 1 and Fig. 2.

Table I shows the number of iterations and computations
for SLS and SLB (computed using the time complexities
discussed in the above remarks) with increasing number of
devices. It can be observed that the devices take significantly
fewer iterations in SLB compared to the SLS. Thus, the

0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 frame

O
bs

er
ve

d
th

ro
ug

hp
ut

SLS Throughput

device 2
device 3
device 4

(a) SLS

0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 frame

O
bs

er
ve

d
th

ro
ug

hp
ut

SLB Throughput

devive 2
device 3
device 4

(b) SLB

Fig. 3. Observed throughput allocations of SLS and SLB

TABLE I

NUMBER OF ITERATIONS AND COMPLEXITY FOR SLS AND SLB WITH

INCREASING NUMBER OF DEVICES

No. of Iterations No. of Comps/Device
Devices SLS iteravg SLB iter SLS SLB

4 7 2 112 64
6 10 2 240 96
9 29 2 1044 144
12 28 3 1344 288
15 33 3 1980 360

maximum number of computations required by SLB are
significantly fewer than that of SLS.

IV. CONCLUSIONS

In this work, we proposed a load balancing algorithm based
on game theory for spectrum allocation. It is shown that the
throughput obtained by devices using SLB is same as that
of SLS although the allocations of devices in the slots are
different. Based on our simulations, SLB is more efficient than
SLS. Another advantage of SLB is that it is based on non-
cooperative game theory and it provides a (Nash equilibrium)
solution which is optimal for all users. This is especially useful
because the users sharing an open spectrum often act in a
selfish manner.

REFERENCES

[1] S. Mangold, Z. Zhong, K. Challapali, and C.-T. Chou, “Spectrum agile
radio: radio resource measurements for opportunistic spectrum usage,” in
Proc. IEEE Global Telecommunications Conference 2004 (GLOBECOM
’04), vol. 6, Dallas, TX, Nov. 2004, pp. 3467–3471.

[2] L. Berlemann and B. Walke, “Spectrum load smoothing for optimized
spectrum utilization–rationale and algorithm,” in Proc. 2005 IEEE Wire-
less Communications and Networking Conference, vol. 2, New Orleons,
LA, Mar. 2005, pp. 735–740.

[3] L. Berlemann, S. Mangold, G. R. Hiertz, and B. Walke, “Spectrum load
smoothing: distributed quality-of-service support for cognitive radios in
open spectrum,” European Trans. Telecommun., vol. 17, pp. 395–406,
Mar. 2006.

[4] W. Yu, W. Rhee, S. Boyd, and J. M. Cioffi, “Iterative water-filling for
Gaussian vector multiple-access channels,” IEEE Trans. Inform. Theory,
vol. 50, no. 1, pp. 145–152, Jan. 2004.

[5] D. Grosu and A. Chronopoulos, “Noncooperative load balancing in
distributed systems,” J. Parallel and Distributed Computing, vol. 65,
no. 9, pp. 1022–1034, Sept. 2005.

