Big-Oh Notation

Let f and g be functions from positive numbers to positive numbers. $f(n)$ is $O(g(n))$ if there are positive constants C and k such that:

$$f(n) \leq C g(n) \text{ whenever } n > k$$

$$f(n) \text{ is } O(g(n)) \equiv \exists C \exists k \forall n \ (n > k \rightarrow f(n) \leq C g(n))$$

To prove big-Oh, choose values for C and k and prove $n > k$ implies $f(n) \leq C g(n)$.

__

Standard Method to Prove Big-Oh

1. Choose $k = 1$.
2. Assuming $n > 1$, find/derive a C such that

$$\frac{f(n)}{g(n)} \leq \frac{C g(n)}{g(n)} = C$$

This shows that $n > 1$ implies $f(n) \leq C g(n)$.

Keep in mind:

- $n > 1$ implies $1 < n$, $n < n^2$, $n^2 < n^3$, …
- “Increase” numerator to “simplify” fraction.
Proving Big-Oh: Example 1

Show that $f(n) = n^2 + 2n + 1$ is $O(n^2)$.

Choose $k = 1$.

Assuming $n > 1$, then

$$\frac{f(n)}{g(n)} = \frac{n^2 + 2n + 1}{n^2} < \frac{n^2 + 2n^2 + n^2}{n^2} = 4$$

Choose $C = 4$. Note that $2n < 2n^2$ and $1 < n^2$.

Thus, $n^2 + 2n + 1$ is $O(n^2)$ because $n^2 + 2n + 1 \leq 4n^2$ whenever $n > 1$.

Proving Big-Oh: Example 2

Show that $f(n) = 3n + 7$ is $O(n)$.

Choose $k = 1$.

Assuming $n > 1$, then

$$\frac{f(n)}{g(n)} = \frac{3n + 7}{n} < \frac{3n + 7n}{n} = \frac{10n}{n} = 10$$

Choose $C = 10$. Note that $7 < 7n$.

Thus, $3n + 7$ is $O(n)$ because $3n + 7 \leq 10n$ whenever $n > 1$.
Proving Big-Oh: Example 3

Show that \(f(n) = (n + 1)^3 \) is \(O(n^3) \).

Choose \(k = 1 \).

Assuming \(n > 1 \), then
\[
\frac{f(n)}{g(n)} = \frac{(n + 1)^3}{n^3} < \frac{(n + n)^3}{n^3} = \frac{8n^3}{n^3} = 8
\]

Choose \(C = 8 \). Note that \(n + 1 < n + n \) and \((n+n)^3 = (2n)^3 = 8n^3 \). Thus, \((n+1)^3 \) is \(O(n^3) \) because \((n + 1)^3 \leq 8n^3 \) whenever \(n > 1 \).

Proving Big-Oh: Example 4

Show that \(f(n) = \sum_{i=1}^{n} i \) is \(O(n^2) \).

Choose \(k = 1 \).

Assuming \(n > 1 \), then
\[
\frac{f(n)}{g(n)} = \frac{\sum_{i=1}^{n} i}{n^2} \leq \frac{\sum_{i=1}^{n} n}{n^2} = \frac{n^2}{n^2} = 1
\]

Choose \(C = 1 \). Note that \(i \leq n \) because \(n \) is the upper limit. Thus, \(\sum_{i=1}^{n} i \) is \(O(n^2) \) because \(\sum_{i=1}^{n} i \leq n^2 \) whenever \(n > 1 \).
How to Show Not Big-Oh

\[f(n) \text{ is not } O(g(n)) \equiv \]
\[\forall C \forall k \exists n \,(n > k \land f(n) > C g(n)) \]

Need to prove for all values of \(C \) and \(k \).

\(C \) and \(k \) cannot be replaced with constants.

Choose \(n \) based on \(C \) and \(k \).

Prove that this choice implies
\[n > k \land f(n) > C g(n) \]

Standard Method to Prove Not-Big-Oh:
1. Assume \(n > 1 \).

2. Show:
\[\frac{f(n)}{g(n)} \geq \frac{h(n) g(n)}{g(n)} = h(n) \]
where \(h(n) \) is strictly increasing to \(\infty \).

3. \(n > h^{-1}(C') \) implies \(h(n) > C \), which implies \(f(n) > C g(n) \).

So choosing \(n > 1 \), \(n > k \), and \(n > h^{-1}(C') \) implies \(n > k \land f(n) > C g(n) \).
Proving Not Big-Oh: Example 1

Show that \(f(n) = n^2 - 2n + 1 \) is not \(O(n) \).

Assume \(n > 1 \), then

\[
\frac{f(n)}{g(n)} = \frac{n^2 - 2n + 1}{n} > \frac{n^2 - 2n}{n} = n - 2
\]

\(n > C + 2 \) implies \(n - 2 > C \) and \(f(n) > Cn \).

So choosing \(n > 1 \), \(n > k \), and \(n > C + 2 \) implies \(n > k \land f(n) > Cn \).

• “Decrease” numerator to “simplify” fraction.

Proving Not Big-Oh: Example 2

Show that \(f(n) = (n - 1)^3 \) is not \(O(n^2) \).

Assume \(n > 1 \), then:

\[
\frac{f(n)}{g(n)} = \frac{n^3 - 3n^2 + 3n - 1}{n^2} > \frac{n^3 - 3n^2 - 1}{n^2}
\]

\[
> \frac{n^3 - 3n^2 - n^2}{n^2} = n - 4
\]

\(n > C + 4 \) implies \(n - 4 > C \) and \(f(n) > Cn^2 \).

Choosing \(n > 1 \), \(n > k \), and \(n > C + 4 \) implies \(n > k \land f(n) > Cn^2 \).
Proving Not Big-Oh: Example 3

Show that \(f(n) = \lfloor n^2/2 \rfloor \) is not \(O(n) \).

Assume \(n > 1 \), then:

\[
\frac{f(n)}{g(n)} = \frac{\lfloor n^2/2 \rfloor}{n} > \frac{n^2/2 - 1}{n} > \frac{n^2/2 - n}{n} = n/2 - 1
\]

\(n > 2C + 2 \rightarrow n/2 - 1 > C \) and \(f(n) > Cn \).

Choosing \(n > 1 \), \(n > k \), and \(n > 2C + 2 \) implies \(n > k \land f(n) > Cn \).