Integer Algorithms: Prime Numbers

\(p \) is prime \(\equiv \)
\(p > 1 \) and \(\forall d \ ((d > 0 \land d \text{ divides } p) \rightarrow (d = 1 \lor d = p)) \)
\(p \) is composite \(\equiv p > 1 \) and \(p \) is not prime.
If \(n \) is composite, then \(\exists d \ (d \text{ divides } n \text{ and } 1 < d \leq \sqrt{n}) \).

\textbf{procedure} prime\((n: \mathbb{Z} \text{ with } n > 1) \)

\textbf{for} \(d := 2 \text{ to } \lfloor \sqrt{n} \rfloor \)

\textbf{if} \(n \) is divisible by \(d \)

\textbf{then return} false

\textbf{return} true

\(\text{prime}(n) \) performs \(O(\sqrt{n}) \) divisions.

\textbf{Greatest Common Divisor}

\(d \) is the greatest common divisor of \(a \) and \(b \) \(\equiv \)
\(d \) is the largest integer that divides \(a \) and \(b \).
\(a \mod m = r \equiv \)
\(m > 0, 0 \leq r < m, \text{ and } \exists q (a = mq + r). \)
If \(a = bq + r \), then \(\gcd(a, b) = \gcd(b, r) \).

\textbf{procedure} gcd\((a, b: \mathbb{Z}^+) \)

\textbf{while} \(b \neq 0 \)

\(r := a \mod b \)
\(a := b \)
\(b := r \)

\textbf{return} \(a \)

\(\gcd(a, b) \) performs \(O(\log(a + b)) \mod \) operations.
Representation of Integers

If $b > 1$ and $n \geq 1$, n can be uniquely represented by:

$$n = \sum_{i=0}^{k} a_i b^i$$

where $k \geq 0$, $0 \leq a_i < b$, and $a_k > 0$

procedure base_expansion (n, b: \mathbb{Z}^+ with $b > 1$)

```plaintext
k := 0
while $n \neq 0$
    $a_k := n \mod b$
    $n := \lfloor n/b \rfloor$
    $k := k + 1$
return ($a_{k-1}, \ldots, a_0$)
```

`base_expansion(n, b)` performs $O(\log_b n)$ mods and divisions, e.g., n can be represented with $O(\log n)$ bits.

Binary Addition

Binary addition adds one column at a time.

procedure add(a, b: \mathbb{Z}^+)

```plaintext
(a_{n-1}, \ldots, a_0) := base_expansion(a, 2)
(b_{n-1}, \ldots, b_0) := base_expansion(b, 2)
carry := 0
for $j := 0$ to $n - 1$
    $s_j := (a_j + b_j + carry) \mod 2$
    carry := $\lfloor(a_j + b_j + carry)/2 \rfloor$
$s_n := carry$
return ($s_n, \ldots, s_0$)
```

`add(a, b)` performs $O(n)$ bit operations, where a and b are represented with n bits.
Binary Multiplication

Binary multiplication performs multiple additions.

procedure multiply\((a, b: \mathbb{Z}^+)\)

\[
(a_{n-1}, \ldots, a_0) := base_expansion(a, 2) \\
(b_{n-1}, \ldots, b_0) := base_expansion(b, 2) \\
p := 0 \\
\text{for } j := 0 \text{ to } n - 1 \\
\quad \text{if } b_j = 1 \text{ then } p := add(p, a) \\
\quad \text{shift } a \text{ one place adding one 0} \\
\text{return } p
\]

\(multiply(a, b)\) performs \(O(n^2)\) bit operations, where \(a\) and \(b\) are represented with \(n\) bits.