Recursive Definitions

Recursive defs. specify the base value(s), and other results by induction from the base case(s).

Recursive definition of $f(n) = a_n = 2^n$
Base Case: $f(0) = 1 \quad a_0 = 1$
Recursion: $f(n) = 2f(n - 1) \quad a_n = 2a_{n-1}$

Recursive definition of $f(n) = a_n = n!$
Base Case: $f(0) = 1 \quad a_0 = 1$
Recursion: $f(n) = n f(n - 1) \quad a_n = n a_{n-1}$

Recursive definition of $f(m, n) = m + n$
Base Case: $f(0, n) = n$
Recursion: $f(m, n) = 1 + f(m - 1, n)$

Recursive definition of $f(m, n) = mn$
Base Case: $f(0, n) = 0$
Recursion: $f(m, n) = n + f(m - 1, n)$
Recursive Definitions to Algorithms

Basic recursive definition pattern:
Base Case: \(f(a) = b \)
Recursion: \(f(n) = g(n, f(n - 1)) \)

Basic recursive algorithm pattern:

```plaintext
procedure f(n: an integer \( \geq a \))
    if \( n = a \)
        then answer := b
    else   answer := g(n, f(n - 1))
    return answer
```

```plaintext
procedure powers_of_2(n: N)
    if \( n = 0 \)
        then answer := 1
    else   answer := 2 * powers_of_2(n - 1)
    return answer
end procedure
```
procedure \textit{power}(a: \mathbb{R}, n: \mathbb{N})
 \begin{align*}
 &\text{if } n = 0 \\
 &\quad \text{then } \text{answer} := 1 \\
 &\quad \text{else } \text{answer} := a \ast \text{power}(a, n - 1) \\
 &\text{return } \text{answer}
 \end{align*}
end procedure

procedure \textit{fast_power}(a: \mathbb{R}, n: \mathbb{Z}^{+})
 \begin{align*}
 &\text{if } n = 1 \\
 &\quad \text{then } \text{answer} := a \\
 &\quad \text{else if } n \text{ is even} \\
 &\quad \quad \text{then } x := \text{fast_power}(a, n/2) \\
 &\quad \quad \quad \text{answer} := x \ast x \\
 &\quad \quad \text{else } x := \text{fast_power}(a, n - 1) \\
 &\quad \quad \text{answer} := a \ast x \\
 &\text{return } \text{answer}
 \end{align*}
end procedure
procedure factorial(n: N)

 if n = 0
 then answer := 1
 else answer := n * factorial(n - 1)

 return answer

end procedure

procedure gcd(a, b: N)

 if a = 0
 then answer := b
 else answer := gcd(b mod a, a)

 return answer

end procedure
\(k \) is the key, \(l \) is the left end, \(r \) is the right end.

\begin{verbatim}
procedure binary_search(k, l, r: \mathbb{Z}^+, a_1, \ldots, a_n: \mathbb{Z})
 if l = r
 then if k = a_l
 then answer := l
 else answer := 0
 else m := \lfloor (l + r)/2 \rfloor
 if k \leq a_m
 then answer :=
 binary_search(k, l, m, a_1, \ldots, a_n)
 else answer :=
 binary_search(k, m + 1, r, a_1, \ldots, a_n)
 return answer
\end{verbatim}

\begin{verbatim}
procedure stupid_fibonacci(n: \mathbb{N})
 if n = 0
 then answer := 0
 else if n = 1
 then answer := 1
 else answer := stupid_fibonacci(n - 1)
 + stupid_fibonacci(n - 2)
 return answer
end procedure
\end{verbatim}
procedure smart_fibonacci(n: N)
if n = 0
then answer := (0, 0)
belse if n = 1
 then answer := (1, 0)
else (a, b) := smart_fibonacci(n - 1)
 answer := (a + b, a)
return answer
end procedure