Trees

A *tree* is a connected undirected graph with no simple circuits.

A *forest* is a undirected graph with no simple circuits. A forest is a set of trees.

In a *rooted tree*, one vertex is the *root*, and all edges are directed away from the root.
Rooted Tree Terminology

If there is an edge \((u, v)\) in a rooted tree, \(u\) is the parent of \(v\), and \(v\) is a child of \(u\).

\(u\) and \(v\) are siblings if they have same parent.

If there is a path from \(u\) to \(v\) in a rooted tree, \(u\) is an ancestor of \(v\), \(v\) is a descendant of \(v\), and \(v\) is in \(u\)’s subtree.

The height of a tree is the length of the longest path from the root to a vertex.

If \(u\) has children, then \(u\) is internal.
If \(u\) has no children, then \(u\) is a leaf.

A rooted tree is an \(m\)-ary tree if every internal vertex has \(\leq m\) children. It is a full \(m\)-ary tree if every internal vertex has exactly \(m\) children. A binary tree is an \(m\)-ary tree with \(m = 2\).

In an ordered rooted tree, siblings are ordered. In an ordered binary tree, an internal vertex has a left child and/or a right child.
Properties of Trees

A tree with \(n \) vertices has \(n - 1 \) edges.
Proof: Every vertex except the root has an edge from its parent.

A full \(m \)-ary tree with \(i \) internal vertices has \(n = mi + 1 \) vertices.
Proof: Each internal vertex has \(m \) edges to its children. \(mi \) edges imply \(mi + 1 \) vertices.

A binary tree of height \(h \) has up to \(2^h \) leaves.
Proof later.

\[
\text{A binary tree of height } h \text{ has } \leq 2^{h+1} - 1 \text{ vertices.}
\]
Proof: Solve for \(n = i + l, \ n = 2i + 1, \) and \(l = 2^h \).

The minimum height of a binary tree with \(l \) leaves is \(\lceil \log l \rceil \).

The minimum height of a binary tree with \(n \) vertices is \(\lfloor \log n \rfloor \).
Number of Leaves of a Binary Tree

Predicate $P(h)$:
A binary tree of height h has $\leq 2^h$ leaves.

Basis $P(0)$:
A binary tree of height 0 has $2^0 = 1$ leaf.

Induction: Prove $P(k) \rightarrow P(k + 1)$

Assume $P(k)$.
A binary tree of height k has $\leq 2^k$ leaves.

Show $P(k + 1)$:
A binary tree of height $k + 1$ has $\leq 2^{k+1}$ leaves.

Proof:
The root of a binary tree of height $k + 1$ can have 2 subtrees of height k (or less).

By the inductive assumption, a binary tree of height k has $\leq 2^k$ leaves.

Therefore, 2 subtrees of height k have $\leq 2(2^k) = 2^{k+1}$ leaves.
Tree Traversal

procedure *preorder*(T: ordered rooted tree)
 process root of T
 for each subtree S of T from left to right
 preorder(S)
end procedure

procedure *postorder*(T: ordered rooted tree)
 for each subtree S of T from left to right
 postorder(S)
 process root of T
end procedure

procedure *inorder*(T: ordered rooted tree)
 if T has subtrees
 then *inorder* (first subtree of T)
 process root of T
 if T has subtrees
 then for remaining subtrees S of T
 inorder(S)
end procedure