Your solutions must be submitted to Blackboard as a PDF document.

1. (10 pts.) Show a recursion tree for $T(n) = T(n - 1) + T(n - 2) + 1$. Provide upper and lower asymptotic bounds on $T(n)$.

2. Consider the weighted graph G in Figure 23.1. Wherever there is a weight $w(u, v)$, replace that weight with $20 - w(u, v)$.

 (a) (10 pts.) Display this new weighted graph.

 (b) (10 pts.) Trace Kruskal’s Algorithm on the graph. That is, show the order in which edges are added to the minimum-spanning tree.

 (c) (10 pts.) Trace Prim’s Algorithm on the graph for two different roots, a and e. That is, show the order in which edges are added to the minimum-spanning tree.

3. (10 pts.) Trace the Bellman-Ford Algorithm on the graph in Figure 24.4 using z as the start vertex.

4. (10 pts.) Trace Dijkstra’s Algorithm on the graph in Figure 24.6 using z as the start vertex.

5. (10 pts.) Suppose (u, v) is the minimum-weight edge incident on u in a graph G, where G is undirected, connected, and weighted. Assume all weights are distinct. Show that (u, v) belongs to some minimum spanning tree of G. Hint: If T is a spanning tree without (u, v), show to construct a spanning tree T' that includes (u, v) and has a lower total weight.

6. (10 pts.) Using the the Bellman-Ford algorithm as a subroutine, write an algorithm in pseudocode to determine if a directed graph G contains a cycle. What is the running time of your algorithm?

7. (20 pts.) In pseudocode, write an algorithm to count all the simple paths in a graph, including paths of length 0. Don’t worry about creating an efficient algorithm. Hint: Write it recursively with one parameter equal to the vertices not in the current path. What is the running time of your algorithm?