Illustration of a Max-heap

(a) Illustrates relationships between values in the array

(b) Binary heap is an array satisfying heap property

Note array is 1-indexed.
Parent(i)

1. return \(\lfloor i/2 \rfloor \)

Left(i)

1. return \(2i \)

Right(i)

1. return \(2i + 1 \)

\(\text{Left}(i) \) is a max-heap, \(\text{Right}(i) \) is a max-heap, \(1 \leq i \leq A.\text{heap-size} \).

Max-Heapify(A, i)

1. \(l = \text{Left}(i) \)
2. \(r = \text{Right}(i) \) \(\text{if} \ l \leq A.\text{heap-size} \text{ and } A[l] > A[i] \)
3. \(\text{largest} = l \)
4. \(\text{if } r \leq A.\text{heap-size} \text{ and } A[r] > A[\text{largest}] \)
5. \(\text{largest} = r \)
6. \(\text{if largest} \neq i \)
7. exchange \(A[i] \) with \(A[\text{largest}] \)
8. \(\text{Max-Heapify}(A, \text{largest}) \)

\(i \) is a max-heap.
1, 4, 2, 3, 9, 7, 8, 10, 14, 16

All are trivially max-heaps

10 14 16
null null

14 16 7
10 3 9

These are max-heaps

These are max-heaps

These are max-heaps
Max-heapify

\[n = A.heap_size \]

best-case is \(\Theta(1) \)

worst-case is \(\Theta(\lg n) \)

\[T(n) = T\left(\frac{n}{2}\right) + 2 \]

\(T(n) \approx 2 \lg n \)

Max-heapify is \(\Omega(1) \) and \(\Theta(\lg n) \)