Longest Common Subsequence Problem

In the longest-common-subsequence problem, we are given two sequences \(X = \langle x_1, x_2, \ldots, x_m \rangle \) and \(Y = \langle y_1, y_2, \ldots, y_n \rangle \) and wish to find a maximum-length common subsequence of \(X \) and \(Y \).

- \(axbyce \) LCS is \(abc \)
- \(aibjce \) LCS is \(abc \)
- \(wxbyce \) LCS is \(abc \)
- \(zaybxcw \) LCS is \(yc \)

Dynamic Programming Solution

- LCS is \(amio \)
- LCS is \(otin \)
- LCS is \(moin \)
if first characters match,
then find LCS of rest of strings
of
$S[2...m]$ and $T[2...n]$.

One string is $S[1...m]$
other string is $T[1...n]$

Try the following three possibilities

$S[1...m]$ $S[2...m]$ $S[2...m]$
$T[2...n]$ $T[1...n]$ $T[2...n]$

End up wanting LCS of $S[i...m]$ and $T[j...n]$

Write a recursive alg $LCS(S,i,T,j)$
\[\text{LCS}(S, i, T, j) \]

- if \(i > S.\text{length} \) or \(j > T.\text{length} \)
 - return 0
- if \(S[i] = T[j] \)
 - return \(1 + \text{LCS}(S, i+1, T, j+1) \)
- else
 - \(\text{val1} = \text{LCS}(S, i, T, j+1) \)
 - \(\text{val2} = \text{LCS}(S, i+1, T, j) \)
 - \(\text{val3} = \text{LCS}(S, i+1, T, j+1) \)
 - return \(\max(\text{val1}, \text{val2}, \text{val3}) \)

\[\text{Table}[i, j] = 1 + \text{LCS}(S, i+1, T, j+1) \]
- return \(\text{Table}[i, j] \)

\[\text{Table}[i, j] = \max(\text{val1}, \text{val2}, \text{val3}) \]
- return \(\text{Table}[i, j] \)