Dijkstra’s algorithm solves the single-source shortest-paths problem on a weighted, directed graph $G = (V, E)$ for the case in which all edge weights are nonnegative.

Dijkstra’s Algorithm

DIJKSTRA(G, w, s)

1. **INITIALIZE-SINGLE-SOURCE**(G, s)
2. $S = \emptyset$
3. $Q = G.V$
4. while $Q \neq \emptyset$
 5. $u = \text{EXTRACT-MIN}(Q)$
 6. $S = S \cup \{u\}$
 7. for each vertex $v \in G.Adj[u]$
 8. $\text{RELAX}(u, v, w)$

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph $G = (V, E)$ with non-negative weight function w and source s, terminates with $u.d = \delta(s, u)$ for all vertices $u \in V$.
Dijkstra’s algorithm solves the single-source shortest-paths problem on a weighted, directed graph $G = (V, E)$ for the case in which all edge weights are nonnegative.

DIJKSTRA(G, w, s)

1. **INITIALIZE-SINGLE-SOURCE(G, s)**
2. $S = \emptyset$
3. $Q = G.V$
4. while $Q \neq \emptyset$

 5. $u = \text{EXTRACT-MIN}(Q)$
 6. $S = S \cup \{u\}$
 7. for each vertex $v \in G.Adj[u]$

 8. $\text{RELAX}(u, v, w)$

Theorem 24.6 (Correctness of Dijkstra’s algorithm)

Dijkstra’s algorithm, run on a weighted, directed graph $G = (V, E)$ with nonnegative weight function w and source s, terminates with $u.d = \delta(s, u)$ for all vertices $u \in V$.

Running Time

- $\Theta(V)$
- $\Theta(1)$
- $\Theta(V)$
- $V + 1$
- $V \times O(lg V)$
- $V \times O(C)$
- $E \times O(lg V)$

worst-case $O(E lg V)$ maybe better $O(E+V) lg V$
C is the source vertex.
Q = \{ b, c, a \}

10 \text{ not changed, } 16 \text{ is worse than } 14