Asymptotic Notation

Big Oh
Big Omega
Big Theta
little oh
little omega
Notation

Graph Illustration

Big Oh

Big Omega

Big Theta

little oh

little omega

Graph Illustration

Big Oh

O-notation

The Θ-notation asymptotically bounds a function from above and below. When we have only an asymptotic upper bound, we use O-notation. For a given function \(g(n) \), we denote by \(O(g(n)) \) (pronounced “big oh of \(g \) of \(n \)”) or sometimes just “oh of \(g \) of \(n \)” the set of functions

\[
O(g(n)) = \{ f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \}.
\]
Big Omega

Ω-notation

Just as \(O\)-notation provides an asymptotic upper bound on a function, \(\Omega\)-notation provides an asymptotic lower bound. For a given function \(g(n)\), we denote by \(\Omega(g(n))\) (pronounced “big-omega of \(g\) of \(n\)” or sometimes just “omega of \(g\) of \(n\)”) the set of functions

\[
\Omega(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \}.
\]

little oh

o-notation

The asymptotic upper bound provided by \(O\)-notation may or may not be asymptotically tight. The bound \(2n^2 = O(n^2)\) is asymptotically tight, but the bound \(2n = O(n^2)\) is not. We use \(o\)-notation to denote an upper bound that is not asymptotically tight. We formally define \(o(g(n))\) (“little-oh of \(g\) of \(n\)”) as the set

\[
o(g(n)) = \{ f(n) : \text{for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \leq f(n) < cg(n) \text{ for all } n \geq n_0 \}.
\]

For example, \(2n = o(n^2)\), but \(2n^2 \neq o(n^2)\).

Big Theta

Θ-notation

In Chapter 2, we found that the worst-case running time of insertion sort is \(T(n) = \Theta(n^2)\). Let us define what this notation means. For a given function \(g(n)\), we denote by \(\Theta(g(n))\) the set of functions

\[
\Theta(g(n)) = \{ f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0 \}.
\]

little omega

ω-notation

By analogy, \(\omega\)-notation is to \(\Omega\)-notation as \(o\)-notation is to \(O\)-notation. We use \(\omega\)-notation to denote a lower bound that is not asymptotically tight. One way to define it is by

\[
f(n) \in \omega(g(n)) \text{ if and only if } g(n) \in o(f(n)).
\]

Formally, however, we define \(\omega(g(n))\) (“little-omega of \(g\) of \(n\)”) as the set

\[
\omega(g(n)) = \{ f(n) : \text{for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \leq cg(n) < f(n) \text{ for all } n \geq n_0 \}.
\]

For example, \(n^2/2 = \omega(n)\), but \(n^2/2 \neq \omega(n^2)\).