Greedy Algorithms

Introduction
Activity Selection
Knapsack
Huffman Coding
Greedy Programming Definition

Algorithms for optimization problems typically go through a sequence of steps, with a set of choices at each step. For many optimization problems, using dynamic programming to determine the best choices is overkill; simpler, more efficient algorithms will do. A greedy algorithm always makes the choice that looks best at the moment. That is, it makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution (or close to globally optimal).
Suppose we have a set \(S = \{a_1, a_2, \ldots, a_n\} \) of \(n \) proposed activities that wish to use a resource, such as a lecture hall, which can serve only one activity at a time. Each activity \(a_i \) has a start time \(s_i \) and a finish time \(f_i \), where \(0 \leq s_i < f_i < \infty \). If selected, activity \(a_i \) takes place during the half-open time interval \([s_i, f_i)\). Activities \(a_i \) and \(a_j \) are compatible if the intervals \([s_i, f_i)\) and \([s_j, f_j)\) do not overlap. That is, \(a_i \) and \(a_j \) are compatible if \(s_i \geq f_j \) or \(s_j \geq f_i \). In the activity-selection problem, we wish to select a maximum-size subset of mutually compatible activities. We assume that the activities are sorted in monotonically increasing order of finish time:

\[
f_1 \leq f_2 \leq f_3 \leq \cdots \leq f_{n-1} \leq f_n. \tag{16.1}
\]

(We shall see later the advantage that this assumption provides.) For example, consider the following set \(S \) of activities:

<table>
<thead>
<tr>
<th>(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_i)</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>(f_i)</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>
The **0-1 knapsack problem** is the following. A thief robbing a store finds n items. The ith item is worth v_i dollars and weighs w_i pounds, where v_i and w_i are integers. The thief wants to take as valuable a load as possible, but he can carry at most W pounds in his knapsack, for some integer W. Which items should he take? (We call this the 0-1 knapsack problem because for each item, the thief must either take it or leave it behind; he cannot take a fractional amount of an item or take an item more than once.)

In the **fractional knapsack problem**, the setup is the same, but the thief can take fractions of items, rather than having to make a binary (0-1) choice for each item.
Huffman Coding

<table>
<thead>
<tr>
<th>Frequency (in thousands)</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed-length codeword</td>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Variable-length codeword</td>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>1101</td>
<td>1100</td>
</tr>
</tbody>
</table>

we consider the problem of designing a **binary character code** (or **code** for short) in which each character is represented by a unique binary string, which we call a **codeword**. If we use a **fixed-length code**, we need 3 bits to represent 6 characters: \(a = 000, b = 001, \ldots, f = 101\). This method requires 300,000 bits to code the entire file. Can we do better?

A **variable-length code** can do considerably better than a fixed-length code, by giving frequent characters short codewords and infrequent characters long codewords. Figure 16.3 shows such a code; here the 1-bit string 0 represents \(a\), and the 4-bit string 1100 represents \(f\). This code requires

\[
(45 \cdot 1 + 13 \cdot 3 + 12 \cdot 3 + 16 \cdot 3 + 9 \cdot 4 + 5 \cdot 4) \cdot 1,000 = 224,000 \text{ bits}
\]
Huffman Trees

Definition
Activity
Knapsack
Huffman 1
Huffman 2
Huffman 3
Huffman 4

(a) Huffman Trees

(b) Huffman Trees
Huffman Algorithm

HUFFMAN(C)

1. \(n = |C| \)
2. \(Q = C \)
3. for \(i = 1 \) to \(n - 1 \)
4. allocate a new node \(z \)
5. \(z.left = x = \text{EXTRACT-MIN}(Q) \)
6. \(z.right = y = \text{EXTRACT-MIN}(Q) \)
7. \(z.freq = x.freq + y.freq \)
8. \(\text{INSERT}(Q, z) \)
9. return \(\text{EXTRACT-MIN}(Q) \) \hspace{1cm} // return the root of the tree