Heapsort

Binary Heaps
Partition
Worst-Case, Best-Case, Average-Case
Randomized Quicksort
Formal Analysis
Heap Property

There are two kinds of binary heaps: max-heaps and min-heaps. In both kinds, the values in the nodes satisfy a heap property, the specifics of which depend on the kind of heap. In a max-heap, the max-heap property is that for every node i other than the root,

$$A[\text{PARENT}(i)] \geq A[i].$$

that is, the value of a node is at most the value of its parent. Thus, the largest element in a max-heap is stored at the root, and the subtree rooted at a node contains values no larger than that contained at the node itself. A min-heap is organized in the opposite way; the min-heap property is that for every node i other than the root,

$$A[\text{PARENT}(i)] \leq A[i].$$

The smallest element in a min-heap is at the root.

Max-Heapify

MAX-HEAPIFY(A, i)

1. $l = \text{LEFT}(i)$
2. $r = \text{RIGHT}(i)$
3. if $l \leq A.\text{heap-size}$ and $A[l] > A[i]$
 4. largest = l
5. else largest = i
6. if $r \leq A.\text{heap-size}$ and $A[r] > A[\text{largest}]$
 7. largest = r
8. if largest $\neq i$
 9. exchange $A[i]$ with $A[\text{largest}]$
10. MAX-HEAPIFY($A, \text{largest}$)

Build-Max-Heap

BUILD-MAX-HEAP(A)

1. $A.\text{heap-size} = A.length$
2. for $i = \lfloor A.length/2 \rfloor$ down to 1
3. MAX-HEAPIFY(A, i)
Build-Max-Heap Illustration, Part 1

Heapsort Algorithm

\textsc{Heapsort}(A)

1. \textsc{Build-Max-Heap}(A)
2. for \(i = A.length \) downto 2
4. \(A.heap-size = A.heap-size - 1 \)
5. \textsc{Max-Heapify}(A, 1)

Build-Max-Heap Illustration, Part 2

Heapsort Illustration, Part 1
Heapsort Illustration, Part 2

Heap-Extract-Max

HEAP-EXTRACT-MAX(A)
1. if A.heap-size < 1
2. error “heap underflow”
3. $\text{max} = A[1]$
5. A.heap-size = A.heap-size − 1
6. MAX-HEAPIFY(A, 1)
7. return max

Heap-Increase-Key

HEAP-INCREASE-KEY(A, i, key)
1. if $key < A[i]$
2. error “new key is smaller than current key”
3. $A[i] = key$
4. while $i > 1$ and $A[\text{PARENT}(i)] < A[i]$
5. exchange $A[i]$ with $A[\text{PARENT}(i)]$
6. $i = \text{PARENT}(i)$

Priority Queue Operations

A **priority queue** is a data structure for maintaining a set S of elements, each with an associated value called a **key**. A **max-priority queue** supports the following operations:

- **INSERT**(S, x) inserts the element x into the set S, which is equivalent to the operation $S = S \cup \{x\}$.
- **MAXIMUM**(S) returns the element of S with the largest key.
- **EXTRACT-MAX**(S) removes and returns the element of S with the largest key.
- **INCREASE-KEY**(S, x, k) increases the value of element x’s key to the new value k, which is assumed to be at least as large as x’s current key value.
Max-Heap-Insert

Max-Heap-Insert \((A, key)\)

1. \(A.heap-size = A.heap-size + 1\)
2. \(A[A.heap-size] = -\infty\)
3. **Heap-Increase-Key** \((A, A.heap-size, key)\)

Heap-Increase-Key Illustration

(a)
(b)
(c)
(d)