Introduction

Useful Sources: Section 28.3 of textbook, Wikipedia articles on Gradient Descent and Machine Learning

Machine learning is concerned with algorithms that can learn from data (or experience) to improve performance.

Assume the **performance measure** is an error function (or loss, risk, or cost function).

Assume algorithm finds values for parameters and/or constructs a specific kind of data structure such as a neural network or Bayesian network.

Introduction Continued

A *hypothesis* is a specific assignment to the parameters/data structure.

The typical basic machine learning algorithm performs *incremental improvement*. That is, it has an initial hypothesis, then makes incremental changes to decrease its performance measure.

Gradient descent is one approach for implementing incremental improvement.

There are many more sophisticated variations, but they generally follow the above ideas.
Textbook Example

As an example of producing a least-squares fit, suppose that we have five data points

\[(x_1, y_1) = (-1, 2),\]
\[(x_2, y_2) = (1, 1),\]
\[(x_3, y_3) = (2, 1),\]
\[(x_4, y_4) = (3, 0),\]
\[(x_5, y_5) = (5, 3),\]

shown as black dots in Figure 28.3. We wish to fit these points with a quadratic polynomial

\[F(x) = c_1 + c_2 x + c_3 x^2.\]

Matrix Representation

Minimize \[\| A \mathbf{c} - \mathbf{y} \|^2 \]

\[
A = \begin{pmatrix}
1 & x_1 & x_1^2 \\
1 & x_2 & x_2^2 \\
1 & x_3 & x_3^2 \\
1 & x_4 & x_4^2 \\
1 & x_5 & x_5^2
\end{pmatrix} = \begin{pmatrix}
1 & -1 & 1 \\
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9 \\
1 & 5 & 25
\end{pmatrix} \quad \mathbf{c} = \begin{pmatrix}
c_1 \\
c_2 \\
c_3
\end{pmatrix} = \begin{pmatrix}
1.200 \\
-0.757 \\
0.214
\end{pmatrix}
\]

\[
\mathbf{Y} = \begin{pmatrix}
y_1 \\
y_2 \\
y_3 \\
y_4 \\
y_5
\end{pmatrix} = \begin{pmatrix}
2 \\
1 \\
1 \\
0 \\
3
\end{pmatrix}
\]