Features
Consider problems where a solution is a single state (Sudoku, schedule).

Instead of treating each state like a black box, one can reason about the features of a state.

Each feature is mapped to a variable, which has a set of possible values, its domain.

A possible world is an assignment of values to the variables. A valid possible world is a model.

A hard constraint specifies valid combinations of values for, typically, a small subset of the variables.

A soft constraint specifies the costs of different combinations of values.
A Constraint Satisfaction Problems (CSP) consist of a set of variables, a domain for each variable, and a set of (hard) constraints.

One way to solve CSPs is to use arc consistency.

- Each variable X starts with all of its possible values.
- A possible value x can be eliminated if arc inconsistent with a constraint c.
- This means no combination of possible values allowed by c includes $X = x$.

To solve CSPs, combine arc consistency with domain splitting, trying all values of a variable.
Generalized Arc Consistency

Procedure $GAC(V, C, D)$

Inputs: V: a set of variables
C: a set of constraints
D_X: a set of values for each variable X

Output: an arc-consistent D

repeat until no more changes are made
for each constraint $c \in C$
for each variable X used by c
for each value $x \in D_X$
if $X = x$ is not valid for c and D
remove x from D_X
return D
Example CSP

Features

Satisficing Search
CSPs
GAC Algorithm
Example CSP
Domain Splitting
Optimization Search

Diagram:

- Node A with domain \{1,2,3,4\}
- Node B with domain \{1,2,4\}
- Node C with domain \{1,3,4\}
- Node D with domain \{1,2,3,4\}
- Node E with domain \{1,2,3,4\}

Edges:
- A ≠ B
- A = D
- B ≠ D
- B ≠ C
- E < A
- E < D
- E < C
- E < B
Procedure $DS(V, C, D)$

Inputs: V: a set of variables
C: a set of constraints
D_X: a set of values for each variable X

Output: null or a solution D'

$D \leftarrow GAC(V, C, D)$

if some $D_X = \emptyset$ return null
if every D_X has one value return D

$X \leftarrow$ some variable where $|D_X| > 1$

for each value $x \in X$

$D' \leftarrow DS(V, C, \text{copy of } D \text{ with } D'_X = \{x\})$

if $D' \neq \text{null}$ return D'

return null
Local search methods try to improve an assignment to the variables by taking a series of small steps. The goal is to efficiently find good solutions.

Procedure *Local-Search*(\(V, C\))

Inputs: \(V\): a set of variables
\(C\): a set of constraints

Output: a solution \(A\)

\(A \leftarrow \) an assignment of variables to values

while \(A\) does not satisfy \(C\)

\(A \leftarrow\) choose a “neighbor” of \(A\)

return \(A\)
Iterative Improvement

- An *evaluation function* provides the value of each state.
 - For CSPs, one could use the number of constraints that are not satisfied.
- *Hill climbing* selects the best neighbor.
- For continuous variables, *gradient descent* changes all the variables based on partial derivatives.
The problem with iterative improvement is finding states that are locally optimal, but far from globally optimal.
Randomization

Use *randomization* to avoid local optima.

- Random restart: repeatedly start local search with different assignments.
- Random walk: interleave random steps with improvement steps.
- Tabu list: avoid recently used variable-value assignments to try to avoid cycles.
- Simulated annealing: Start local search with mostly random steps and gradually increase the proportion of improvement steps.
Genetic algorithms is a popular local search method, inspired by natural selection.

- **Population**: Instead of storing one assignment (individual) at a time, store many individuals.
- **Mutation**: A new individual can be generated by random small steps from an old individual.
- **Crossover**: A new individual can be generated by combining the variable assignments of two old individuals.
- **Random Selection**: Select the new population using the evaluation function combined with some randomness.