Learning

Learning Definitions

- Learning is improvement of performance (time, accuracy).
- In supervised learning, from training examples of input-output pairs, predict the output of a new input.
- In unsupervised learning, examples do not have outputs. The most common task is clustering.
- In semi-supervised learning, some examples have outputs. For example, in reinforcement learning, an input is a series of actions, and the output is intermittent feedback.

Supervised Learning

- Assume the learner is given the following:
 - a set of input features, \(X_1, \ldots, X_n \);
 - a target feature, \(Y \);
 - a set of training examples, each with values for the \(X \)'s and \(Y \);
 - a set of test examples, each with values only for the \(X \)'s.
- The learner finds a hypothesis \(h \) to predict the target from the inputs.
- Usually, \(h \) is restricted to be an element from a hypothesis space.
- Regression is when the target is continuous.
- Classification is when the target is discrete.

Example of Examples

<table>
<thead>
<tr>
<th>No.</th>
<th>Input Features</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny hot high false</td>
<td>neg</td>
</tr>
<tr>
<td>2</td>
<td>sunny hot high true</td>
<td>neg</td>
</tr>
<tr>
<td>3</td>
<td>overcast hot high false</td>
<td>pos</td>
</tr>
<tr>
<td>4</td>
<td>rain mild high false</td>
<td>pos</td>
</tr>
<tr>
<td>5</td>
<td>rain cool normal false</td>
<td>pos</td>
</tr>
<tr>
<td>6</td>
<td>rain cool normal true</td>
<td>neg</td>
</tr>
<tr>
<td>7</td>
<td>overcast cool normal true</td>
<td>pos</td>
</tr>
<tr>
<td>8</td>
<td>sunny mild high false</td>
<td>neg</td>
</tr>
<tr>
<td>9</td>
<td>sunny cool normal false</td>
<td>pos</td>
</tr>
<tr>
<td>10</td>
<td>rain mild normal false</td>
<td>pos</td>
</tr>
<tr>
<td>11</td>
<td>sunny mild normal true</td>
<td>pos</td>
</tr>
<tr>
<td>12</td>
<td>overcast mild high true</td>
<td>pos</td>
</tr>
<tr>
<td>13</td>
<td>overcast hot normal false</td>
<td>pos</td>
</tr>
<tr>
<td>14</td>
<td>rain mild high true</td>
<td>neg</td>
</tr>
</tbody>
</table>

Evaluating Predictions

- Let \(y_e \) be the target value for example \(e \).
- Let \(\hat{y}_e \) be the predicted value.
- Error (or loss) measures how close \(\hat{y}_e \) is to \(y_e \).
- Zero-One Error: if \(y_e \neq \hat{y}_e \), then 1, else 0
- Absolute Error: \(|y_e - \hat{y}_e| \)
- Squared Error: \((y_e - \hat{y}_e)^2 \)
- Entropy: \(-(y_e \log \hat{y}_e + (1 - y_e) \log(1 - \hat{y}_e)) \) (assumes \(y_e \) and \(\hat{y}_e \) are probabilities.)
- and many variations.
- For classification, use \(y_e \in \{0, 1\} \) or \(\{-1, 1\} \).
- Secret of machine learning:
 - update hypothesis to reduce error.
Decision Trees

Definition
- Decision trees are a representation for classification.
 - Each nonleaf is labeled by a feature.
 - Edges from nonleaf to children are labeled by feature values.
 - Each leaf is labeled by a prediction.
- Typical Algorithm: Construct the tree top-down.
 - Find the “best” feature.
 - Split examples based on feature’s values.

Algorithm for Learning Decision Trees

Procedure $DTLearner(X, Y, E)$

Inputs X: set of input features, $X = \{X_1, \ldots, X_n\}$
Y: target feature
E: set of training examples

if stopping criterion is true then return a leaf labeled with prediction of Y

Select feature $X_i \in X$, with domain V

let $T = \text{nonleaf node labeled } X_i$

for each $v \in V$

let $E' = \{ e \in E : X_i = v \}$

let $T' = DTLearner(X, Y, E')$

add edge from T to T' labeled v

return T

Selecting a Feature: Information Gain

- p positive examples and n negative examples
- The information contained is:
 \[I(p, n) = -\frac{p}{p+n} \log_2 \left(\frac{p}{p+n} \right) - \frac{n}{p+n} \log_2 \left(\frac{n}{p+n} \right) \]
- Feature X_i has v values, p_j positive examples and n_j negative examples when $X_i = v_j$
- The Remaining of X_i is:
 \[\text{Remainder}(X_i) = \sum_{j=1}^{v} \frac{p_j + n_j}{p+n} I(p_j, n_j) \]
- The information gain of X_i is:
 \[\text{Gain}(X_i) = I(p, n) - \text{Remainder}(X_i) \]
Plot of Information Function

p positive examples and n negative examples

$I(p, n=100-p)$

Plot of Information Gain

p_1 positive and n_1 negative exs. when $X_i = v_1$

p_2 positive and n_2 negative exs. when $X_i = v_2$

$\text{gain}(p_1, n_1=50-p_1, p_2, n_2=50-p_2)$

Example of Feature Selection

Refer to Example of Examples earlier.

Outlook

- Sunny: 2 pos, 4 neg
- Overcast: 3 pos, 2 neg
- Rain: 3 pos, 0 neg

$\text{Gain}(\text{Outlook}) \approx 0.246$

Temp

- Cool: 3 pos, 4 neg
- Mild: 1 neg, 2 neg
- Hot: 2 pos, 2 neg

$\text{Gain}(\text{Temp}) \approx 0.029$
Feature Selection, Continued

- **Humidity**
 - 9 pos, 5 neg
 - Normal
 - High

- **Wind**
 - 9 pos, 5 neg
 - True
 - False

\[\text{Gain(Humidity)} \approx 0.152 \]
\[\text{Gain(Wind)} \approx 0.048 \]

Outlook has the highest gain.
Overcast branch is pure.
Need to construct DTs for two branches.

Other Choices

- **When to stop:**
 - all examples are classified the same
 - all examples have the same feature values
 - too few examples
- **Overfitting** occurs when the algorithm tries to fit noise in the training data (outliers, random fluctuations, approx. decision boundary).
- Handling overfitting: use part of training set as a validation set.
 - create decision tree with training set
 - prune decision tree with validation set

Special Cases in Decision Trees

- **Feature** \(X_i \) **is numeric.**
 - Find best \(X_i \leq v \) test. Requires sorting.
 - Or: Discretization. Partition \(X_i \) into ranges.
- **Feature** \(X_i \) **has missing values.**
 - Pretend missing is just another value.
 - Or: Ignore missing values. Split examples with missing values across branches.
- **Feature** \(X_i \) **has many discrete values.**
 - Find best \(X_i = \) \(v \) test. Forms binary tree.
 - Or: Partition values into subsets.

Iris Dataset

<table>
<thead>
<tr>
<th>No.</th>
<th>Sepal length</th>
<th>Sepal width</th>
<th>Petal length</th>
<th>Petal width</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.8</td>
<td>4.0</td>
<td>1.2</td>
<td>0.2</td>
<td>I. setosa</td>
</tr>
<tr>
<td>2</td>
<td>5.7</td>
<td>4.4</td>
<td>1.5</td>
<td>0.4</td>
<td>I. setosa</td>
</tr>
<tr>
<td>3</td>
<td>4.8</td>
<td>3.4</td>
<td>1.9</td>
<td>0.2</td>
<td>I. setosa</td>
</tr>
<tr>
<td>4</td>
<td>5.0</td>
<td>3.5</td>
<td>1.6</td>
<td>0.6</td>
<td>I. setosa</td>
</tr>
<tr>
<td>5</td>
<td>6.7</td>
<td>3.0</td>
<td>5.0</td>
<td>1.7</td>
<td>I. versicolor</td>
</tr>
<tr>
<td>6</td>
<td>6.0</td>
<td>2.7</td>
<td>5.1</td>
<td>1.6</td>
<td>I. versicolor</td>
</tr>
<tr>
<td>7</td>
<td>5.9</td>
<td>3.2</td>
<td>4.8</td>
<td>1.8</td>
<td>I. versicolor</td>
</tr>
<tr>
<td>8</td>
<td>6.0</td>
<td>3.4</td>
<td>4.5</td>
<td>1.6</td>
<td>I. versicolor</td>
</tr>
<tr>
<td>9</td>
<td>7.6</td>
<td>3.0</td>
<td>6.0</td>
<td>2.1</td>
<td>I. virginica</td>
</tr>
<tr>
<td>10</td>
<td>4.9</td>
<td>2.5</td>
<td>4.5</td>
<td>1.7</td>
<td>I. virginica</td>
</tr>
<tr>
<td>11</td>
<td>7.3</td>
<td>2.9</td>
<td>6.3</td>
<td>1.8</td>
<td>I. virginica</td>
</tr>
<tr>
<td>12</td>
<td>6.7</td>
<td>2.5</td>
<td>5.8</td>
<td>1.8</td>
<td>I. virginica</td>
</tr>
</tbody>
</table>
Naive Bayes

Numerical Learning

- Numerical learning methods learn the parameters or weights of a model, often by optimizing an error function. Examples include:
 - Calculate the parameters of a probability distribution.
 - Separate positive from negative examples by a decision boundary.
 - Find points close to positive but far from negative examples.
 - Update parameters to decrease error.

For target class Y and features X_i, assume:

$$P(Y, X_1, \ldots , X_n) = P(Y)P(X_1|Y)\ldots P(X_n|Y)$$

This corresponds to a Bayesian network where Y is the sole parent of each X_i.

To calculate the belief in Y:

$$P(Y | X_1, \ldots , X_n) = \frac{P(Y, X_1, \ldots , X_n)}{P(X_1, \ldots , X_n)}$$

The denominator is the same for all values of Y, so to compare only the numerator needs to be calculated.

Naive Bayes Learning

- Estimate prior and conditional probabilities by counting, e.g.,
 - $Y = \text{pos}$ in 9 of the 14 examples
 - $X_1 = \text{sunny}$ in 2 examples where $Y = \text{pos}$.
 - If an outcome occurs m times out of n examples, Laplace's law of succession recommends the estimate $(m + 1)/(n + k)$ where k is the number of outcomes.

Naive Bayes Example

Using Laplace's law of succession on the 14 examples:

- $P(Y = \text{pos}) = (9 + 1)/(14 + 2) = 10/16$
- $P(Y = \text{neg}) = (5 + 1)/(14 + 2) = 6/16$
- $P(X_1 = \text{sunny} | Y = \text{pos}) = (2 + 1)/(9 + 3) = 3/12$
- $P(X_1 = \text{overcast} | Y = \text{pos}) = (4 + 1)/(9 + 3) = 5/12$
- $P(X_1 = \text{rain} | Y = \text{pos}) = (3 + 1)/(9 + 3) = 4/12$

For the first example:

- $P(Y = \text{pos} | \text{sunny, hot, high, false}) = \alpha (10/16)(3/12)(3/12)(4/11)(7/11)$
 $\approx \alpha 0.00904$

- $P(Y = \text{neg} | \text{sunny, hot, high, false}) = \alpha (6/16)(4/8)(3/8)(5/7)(3/7)$
 $\approx \alpha 0.02152$

 $\approx \frac{0.02152}{0.00904 + 0.02152} \approx 0.704$
Linear Regression and Classification

Linear Functions

- A linear function of the input features is a dot product of the weights and the inputs.
- Inputs: \(x = (1.0, x_1, \ldots, x_n) \)
- Weights: \(w = (w_0, w_1, \ldots, w_n) \)
- Dot product: \(w \cdot x = w_0 + w_1 x_1 + \ldots + w_n x_n \)

- If \(y \) is the target and \(\hat{y} = w \cdot x \):
 - Regression:
 - Squared error: \((y - \hat{y})^2 \)
 - Absolute error: \(|y - \hat{y}| \)
 - Classification (assume \(y \in \{-1, 1\} \)):
 - Hinge loss: \(\max(0, 1 - y \hat{y}) \)
 - Logistic loss: \(-\log(1/(1 + e^{-y \hat{y}})) \)

Linear Classification

Why \(y \neq \hat{y} \) all over the place?

- The goal of linear regression is \(y = \hat{y} \).
- The goal of linear classification is not \(y = \hat{y} \), but \(\text{sign}(y) = \text{sign}(\hat{y}) \).
- If \(y \) and \(\hat{y} \) have the same sign, then \(y \hat{y} > 0 \).
- The hinge loss includes a margin. Its goal is \(y \hat{y} \geq 1 \).
- The logistic loss is for interpreting \(\hat{y} \) probabilistically (as a log-likelihood). It has larger values for negative \(y \hat{y} \).
- The global minimum can be found for the hinge and logistic loss.

Example of Numeric Examples

<table>
<thead>
<tr>
<th>No.</th>
<th>Sunny</th>
<th>Rainy</th>
<th>Hot</th>
<th>Cool</th>
<th>Humid</th>
<th>Windy</th>
<th>Target Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Generic Linear Learning Algorithm

Procedure \(\text{LinearLearner}(X, Y, E, \eta) \)

- Inputs \(X \): set of input features, \(X = \{X_1, \ldots, X_n\} \)
- \(Y \): target feature
- \(E \): set of training examples
- \(\eta \): learning rate

- Initialize all weights \(w_0, w_1, \ldots, w_n \) to zero
- Repeat until termination
 - For each example \(e = (x, y) \in E \)
 - \(\hat{y} \leftarrow w \cdot x \)
 - \(\delta \leftarrow \text{update based on } y \text{ and } \hat{y} \)
 - \(w \leftarrow w + \eta \delta x \)
 - Return \(w \)
Updates

<table>
<thead>
<tr>
<th>Name</th>
<th>Update</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>$\delta \leftarrow y - \hat{y}$</td>
</tr>
<tr>
<td>Squared error</td>
<td>$\text{Squared error} = (y - \hat{y})^2$</td>
</tr>
<tr>
<td>Absolute error</td>
<td>$\text{Absolute error} = \text{sign}(y - \hat{y})$</td>
</tr>
<tr>
<td>Classification</td>
<td>Classification:</td>
</tr>
<tr>
<td>Perceptron</td>
<td>if $y\hat{y} \leq 0$ then y else 0</td>
</tr>
<tr>
<td>Hinge loss</td>
<td>if $y\hat{y} < 1$ then y else 0</td>
</tr>
<tr>
<td>Logistic loss</td>
<td>$\frac{y}{1 + e^{y\hat{y}}}$</td>
</tr>
</tbody>
</table>

Except for perceptron, the update is based on the derivative of the error with respect to the weights.

Note: For squared error, the optimal solution can be directly computed.

Perceptron Example

Using the learning rate $\eta = 1$:

<table>
<thead>
<tr>
<th>Features</th>
<th>Y</th>
<th>\hat{y}</th>
<th>$y\hat{y}$</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_0 X_1 X_2 X_3 X_4</td>
<td></td>
<td>w_0 w_1 w_2 w_3 w_4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0 0 1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0 0 0 0 0</td>
</tr>
<tr>
<td>1 1 1 1 1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0 1 1 1 1</td>
</tr>
<tr>
<td>1 1 1 1 1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0 1 1 1 1</td>
</tr>
<tr>
<td>1 0 0 1 1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0 1 1 0 0</td>
</tr>
<tr>
<td>1 0 0 0 0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0 1 1 0 0</td>
</tr>
<tr>
<td>1 0 1 0 1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0 1 1 0 0</td>
</tr>
<tr>
<td>1 1 0 0 0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0 1 1 0 0</td>
</tr>
<tr>
<td>1 1 0 1 1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0 1 1 0 0</td>
</tr>
<tr>
<td>1 1 1 1 1</td>
<td>0</td>
<td>-1</td>
<td>0 2</td>
<td>1 1 1 1 1</td>
</tr>
</tbody>
</table>

Perceptron Properties

- The perceptron can learn linearly separable examples with zero error. Linearly separable $= \exists w$ with zero error on all examples.

- Usually, many epochs (passes over the training examples) are needed until convergence.

- If zero error is not possible, use hinge/logistic loss and $\eta \approx \frac{0.1}{n}$, where n is max $x \cdot x$.

![Perceptron Properties Diagram]