Probability

Probability

- Motivation ... 2
- Probability .. 3
- Random Variables .. 4
- Semantics ... 5
- Dice Example ... 6
- Joint Distribution Example 7
- Axioms of Probability 8
- Conditional Probabilities 9
- Using Bayes’ Theorem 10

Conditional Independence

- Problem: Lots of Small Numbers 11
- Conditional Independence 12
- Naive Bayes .. 13

Bayesian Networks

- Bayesian Networks 14
- Example 1 ... 15
- Example 2 ... 16
- Joint Probability Distribution 17
- Examples ... 18
- Model Size .. 19
- Construction .. 20

Algorithms

- Brute Force ... 21
- Example Calculation, Part 1 22
- Example Calculation, Part 2 23
- Pruning Irrelevant Variables 24

Markov Models

- Markov Chains .. 32
- Hidden Markov Models 33
- HMM Probabilities 34

Joint Probability Distribution

- Examples ... 18

Model Size

- Construction .. 20

Algorithms

- Brute Force ... 21
- Example Calculation, Part 1 22
- Example Calculation, Part 2 23
- Pruning Irrelevant Variables 24

Example ... 25
Variable Elimination Algorithm 26
Convert to Factors 27
Set Operation ... 28
Set Operation ... 29
Multiply and Sum Out 30
Multiply and Normalize 31

Markov Models .. 32
Hidden Markov Models 33
HMM Probabilities 34
Probability

Motivation
- Agents don’t have complete knowledge about the world.
- Agents need to make decisions in an uncertain world.
- It isn’t enough to assume what the world is like. Example: wearing a seat belt.
- An agent needs to reason about its uncertainty.
- When an agent acts under uncertainty, it is gambling.
- Agents who don’t use probabilities will do worse than those who do.

Probability
- Belief in a proposition \(a \) can be measured by a number between 0 and 1 — this is the **probability of \(a \) = \(P(a) \).**
 - \(P(a) = 0 \) means that \(a \) is believed false.
 - \(P(a) = 1 \) means that \(a \) is believed true.
- \(0 < P(a) < 1 \) means the agent is unsure.
- Probability is a measure of ignorance.
- Probability is **not** a measure of degree of truth.

Random Variables
- The variables in probability are called **random variables.**
- Each variable \(X \) has a set of possible values.
- A tuple of random variables is written as \(X_1, \ldots, X_n \).
- \(X = x \) means variable \(X \) has value \(x \).
- A **proposition** is a Boolean expression made from assignments of values to variables.
- Example: \(X_1, X_2 \) are the values of two dice. \(X_1 + X_2 = 7 \) is equivalent to \((X_1 = 1 \land X_2 = 6) \lor (X_1 = 2 \land X_2 = 5) \lor \ldots \)

Semantics
- A **possible world** \(\omega \) is a variable assignment (all the variables).
- Let \(\Omega \) be the set of all possible worlds.
- Assuming each variable has a finite set of possible values.
 - Define \(P(\omega) \) for each world \(\omega \) so that \(0 \leq P(\omega) \) and they sum to 1. This is the **joint probability distribution.**
 - The probability of proposition \(a \) is defined by:
 \[
 P(a) = \sum_{\omega | a} P(\omega)
 \]

Dice Example
<table>
<thead>
<tr>
<th>(X_1, X_2)</th>
<th>(X_1)</th>
<th>(X_2)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>1</td>
<td>3</td>
<td>1/36</td>
</tr>
<tr>
<td>1 2</td>
<td>3</td>
<td>1</td>
<td>1/36</td>
</tr>
<tr>
<td>1 3</td>
<td>2</td>
<td>3</td>
<td>1/36</td>
</tr>
<tr>
<td>1 4</td>
<td>5</td>
<td>3</td>
<td>1/36</td>
</tr>
<tr>
<td>1 5</td>
<td>6</td>
<td>3</td>
<td>1/36</td>
</tr>
<tr>
<td>1 6</td>
<td>4</td>
<td>3</td>
<td>1/36</td>
</tr>
<tr>
<td>2 1</td>
<td>2</td>
<td>4</td>
<td>1/36</td>
</tr>
<tr>
<td>2 2</td>
<td>4</td>
<td>4</td>
<td>1/36</td>
</tr>
<tr>
<td>2 3</td>
<td>6</td>
<td>4</td>
<td>1/36</td>
</tr>
<tr>
<td>2 4</td>
<td>5</td>
<td>4</td>
<td>1/36</td>
</tr>
<tr>
<td>2 5</td>
<td>6</td>
<td>5</td>
<td>1/36</td>
</tr>
<tr>
<td>2 6</td>
<td>6</td>
<td>6</td>
<td>1/36</td>
</tr>
</tbody>
</table>
Joint Distribution Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>P</th>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.04</td>
<td></td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>0.04</td>
<td></td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0.32</td>
<td></td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0.00</td>
<td></td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0.00</td>
<td></td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0.08</td>
<td></td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0.16</td>
<td></td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0.16</td>
<td></td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Axioms of Probability

Three axioms for probabilities (finite case)
1. \(0 \leq P(a)\) for any proposition \(p\).
2. \(P(a) = 1\) if \(a\) is a tautology.
3. \(P(a \lor b) = P(a) + P(b)\) if \(a\) and \(b\) contradict.

For all propositions \(a\) and \(b\), these axioms imply:

\[P(\neg a) = 1 - P(a)\]
\[P(a \land b) = P(a) + P(b) - P(a \land b)\]
\[P(a) = P(a \land b) + P(a \land \neg b)\]
\[\text{If variable } V \text{ has possible values } D, \text{ then } P(a) = \sum_{d \in D} P(a \land V = d)\]

Conditional Probabilities

- Conditional probabilities specify how to revise beliefs based on evidence, known values for one or more variables.
- If \(e\) is the evidence, the conditional probability of \(h\) given \(e\) is \(P(h \mid e) = P(h \land e) / P(e)\).
- Chain Rule: \(P(a \land b \land c) = P(a \mid b \land c)P(b \land c)P(c)\)
- Bayes' Theorem: \(P(b \mid e) = P(e \mid h)P(h) / P(e)\)
- Update with additional evidence \(e'\).
 \(P(h \mid e \land e') = P(e' \mid h \land e)P(h \mid e) / P(e' \mid e)\)

Using Bayes' Theorem

- Often you have causal knowledge:
 \(P(\text{symptom} \mid \text{disease})\)
 \(P(\text{light is off} \mid \text{status of switches})\)
 \(P(\text{alarm} \mid \text{fire})\)
 \(P(\text{looks, swims, quacks like a duck} \mid \text{a duck})\)
- and want to do evidential reasoning:
 \(P(\text{disease} \mid \text{symptom})\)
 \(P(\text{status of switches} \mid \text{light is off})\)
 \(P(\text{fire} \mid \text{alarm})\).
 \(P(\text{a duck} \mid \text{looks, swims, quacks like a duck})\)
- Bayes' theorem tells you how.
Conditional Independence

Problem: Lots of Small Numbers

- If there are \(n \) binary variables, there are \(2^n \) numbers to be assigned for a joint probability distribution.
- They need to add up to one, so if \(2^n - 1 \) numbers are assigned, the last one can be solved for. [Doesn’t help much.]
- In addition, each number is likely to be very, very small, so it is unrealistic to use frequencies (even with Big Data).
- Reduce work by using knowledge of when one variable is independent of another variable.

\[P(X = x \wedge Y = y) = P(X = x)P(Y = y). \]

- One die is independent of the other die.
- Rain is independent of the day of the week.

\[P(X = x | Y = y \wedge Z = z) = P(X = x | Z = z) \] for any \(x, y, z \). Knowing \(Z \), ignore \(Y \) to infer \(X \).
- A nice day (\(Y \)) makes me more likely to exercise (\(Z \)), and so more likely to be tired (\(X \)).
- Suppose \(X, Y, Z \) randomly chosen, but \(X \neq Z \) and \(Z \neq Y \).

Naive Bayes

- Suppose we want to determine the probability of a hypothesis given the evidence \(P(H | E_1, \ldots, E_n) \)
- A naive, but often effective, assumption is that the evidence is conditionally independent of the hypothesis.
 \[P(H | E_1, \ldots, E_n) = P(H)P(E_1, \ldots, E_n | H) / P(E_1, \ldots, E_n) \approx P(H) \prod_{i=1}^{n} P(E_i | H) / P(E_1, \ldots, E_n) \]
- Different values for \(H \) have same denominator, so only need to compare numerators.

Bayesian Networks

A Bayesian network\(^*\) consists of:

- a directed acyclic graph, where nodes correspond to variables,
- a set of possible values for each variable,
- a prior probability table for each variable with no parents, and
- a conditional probability table for each variable with parents, specifying the probability of the variable given its parents.

\(^*\)I prefer “Bayesian network” over “belief network”.

CS 3793/5233 Artificial Intelligence

Probability – 11

Probability – 13

Probability – 14
Joint Probability Distribution

- Let X_1, X_2, \ldots, X_n be the variables in the Bayesian network.
- Let ω be an assignment of values to variables.
- Let $\omega(X)$ be the value assigned to X.
- Let $\text{parents}(X)$ be the parents of X in the Bayesian network. $\text{parents}(X) = \emptyset$ if X has no parents.
- The joint probability distribution of a Bayesian network is specified by:

$$P(\omega) = \prod_{i=1}^n P(X_i = \omega(X_i) | \text{parents}(X_i) = \omega(\text{parents}(X_i)))$$

Examples

- Suppose $\neg B, E, A, J, \neg M$ (no burglary, an earthquake, an alarm, John calls, Mary doesn’t call)

$$P(\neg B, E, A, J, \neg M) = P(\neg B)P(E)P(A | \neg B, E)P(J | A)P(\neg M | A) = (0.999)(0.002)(0.29)(0.9)(0.3)$$

- Suppose $\neg C, S, \neg R, W$ (not cloudy, sprinkler was on, no rain, wet grass)

$$P(\neg C, S, \neg R, W) = P(\neg C)P(S | \neg C)P(\neg R | C)P(W | S, \neg R) = (0.5)(0.5)(0.8)(0.9)$$

Model Size

- Suppose n variables, each with k possible values.
- Defining a joint probability table requires k^n probabilities ($k^n - 1$ to be exact).
- In a Bayesian network, a variable with j parents requires a table of k^{j+1} probabilities ($k^{j+1} - 1$ to be exact).
- If no variable has more than j parents, then less than $n \cdot k^{j+1}$ probabilities are required.
- Number of probabilities reduced from exponential in n to linear in n and exponential in j.

Example 1

| B | E | P(A|B,E) |
|---|---|---------|
| T | T | .95 |
| T | F | .94 |
| F | T | .29 |
| F | F | .01 |

Example 2

| C | P(S|C) |
|---|-------|
| T | .10 |
| F | .50 |

| C | P(R|C) |
|---|-------|
| T | .80 |
| F | .20 |
Construction

To represent a problem in a Bayesian network:

□ What are the relevant variables?
 - What will you observe?
 - What would you like to infer?
 - Are there hidden variables that would make the model simpler?
□ What are the possible values of the variables?
□ What is the relationship between them? A cause should be a parent of what it directly affects.
□ How does the value of each variable depend on its parents, if any? This is expressed by prior and conditional probabilities.

Example Calculation, Part 1

Calculate \(P(W \mid C, \neg R) \) in the cloudy example.

1. Apply the conditional probability rule.
 \[
P(W \mid C, \neg R) = \frac{P(W, C, \neg R)}{P(C, \neg R)}
 \]
2. Determine which values in the joint probability table are needed.
 \[
 P(C, S, \neg R, W) \\
 P(C, \neg S, \neg R, W) \\
 P(C, S, \neg R, \neg W) \\
 P(C, \neg S, \neg R, \neg W)
 \]

Example Calculation, Part 2

3. Apply the joint probability distribution for Bayesian networks.
 \[
 P(C, S, \neg R, W) = (0.5)(0.1)(0.2)(0.9) = 0.009 \\
 P(C, \neg S, \neg R, W) = (0.5)(0.9)(0.2)(0.01) = 0.0009 \\
 P(C, S, \neg R, \neg W) = (0.5)(0.1)(0.2)(0.1) = 0.001 \\
 P(C, \neg S, \neg R, \neg W) = (0.5)(0.9)(0.2)(0.99) = 0.0891
 \]
 \[
 P(W \mid C, \neg R) = \frac{P(W, C, \neg R)}{P(C, \neg R)} \\
 = \frac{0.009 + 0.0009}{0.009 + 0.0009 + 0.001 + 0.0891} = 0.099
 \]
Pruning Irrelevant Variables

Some variables might not be relevant to $P(h \mid e)$.

- Prune any variables that have no observed or queried descendents, that is, not part of e or h.
- Connect the parents of any observed variable.
- Remove arc directions and observed variables.
- Prune any variables not connected to h in the (undirected) graph.
- Calculate $P(h \mid e)$ in original network minus pruned variables.

In example on the next slide, compare $P(H \mid Q, P)$ and $P(H \mid K, Q, P)$.

Example

Variable Elimination Algorithm

Variable elimination is an exact algorithm for computing $P(h \mid e)$. Assume h is one variable.

- Convert each probability table into a factor. Let F be all the factors.
- Eliminate each non-query variable X in turn:
 - Identify the factors F' in which X appears.
 - If X is observed, set X to the observed value in each factor in F'.
 - Otherwise, multiply the factors in F' together, sum out X, add the result to F, and remove F' from F.
- Multiply the remaining factors and normalize.

Convert to Factors

These are the factors of the cloudy network.

\[
\begin{array}{|c|c|c|c|}
\hline
C & S & R & W \\
\hline
T & 0.5 & T & T & 0.99 \\
F & 0.5 & T & F & 0.01 \\
F & 0.5 & F & T & 0.90 \\
F & 0.5 & F & F & 0.10 \\
\hline
\end{array}
\]

Want $P(W \mid C, \neg R)$.

\[
\begin{array}{|c|c|c|c|c|}
\hline
C & S & R & W & \text{val} \\
\hline
T & T & T & T & 0.8 \\
T & F & F & F & 0.90 \\
F & T & F & F & 0.10 \\
F & F & T & F & 0.01 \\
F & F & F & F & 0.99 \\
\hline
\end{array}
\]
Set Operation

Setting C to T and R to F.

<table>
<thead>
<tr>
<th>C</th>
<th>S val</th>
<th>R</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0.5</td>
<td>T</td>
<td>0.8</td>
</tr>
<tr>
<td>E</td>
<td>0.5</td>
<td>T</td>
<td>4.2</td>
</tr>
<tr>
<td>F</td>
<td>0.5</td>
<td>T</td>
<td>4.2</td>
</tr>
<tr>
<td>F</td>
<td>0.5</td>
<td>F</td>
<td>0.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0.1</td>
</tr>
<tr>
<td>F</td>
<td>0.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0.5</td>
</tr>
<tr>
<td>F</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Multiply and Normalize

Multiply remaining tables (only h is left).

$$\begin{align*}
\text{val} & \times \text{val} \times W \frac{\text{val}}{T} = W \frac{\text{val}}{T} \\
0.5 & \times 0.2 \times W \frac{0.099}{T} = W \frac{0.099}{T} \\
\text{Normalize} = W \frac{0.099}{T} \\
\end{align*}$$

Markov Models

Markov Chains

A Markov chain is a Bayesian network for representing a sequence of values.

- This represents the Markov assumption:
 $$P(S_{t+1} \mid S_0, \ldots, S_t) = P(S_{t+1} \mid S_t)$$
- A stationary Markov chain has
 $$P(S_{t+1} \mid S_t) = P(S_1 \mid S_0)$$
- Sequence of states over time, e.g., queueing theory.
- Probability of next item (word, letter) given previous item.
Hidden Markov Models

A hidden Markov model adds observations to a Markov chain.

- States are not directly observable.
- Observations provide evidence for states.
- $P(S_0)$ specifies initial conditions.
- $P(S_{t+1} \mid S_t)$ specifies the dynamics.
- $P(O_k \mid S_i)$ specifies the sensor model.

HMM Probabilities

- To compute $P(S_i \mid O_0, \ldots, O_i, \ldots, O_k)$
 - Compute variable elimination forward. This computes $P(S_i \mid O_0, \ldots, O_{i-1})$.
 - Compute variable elimination backward. This computes $P(O_i, \ldots, O_k \mid S_i)$.
 - $P(S_i \mid O_0, \ldots, O_k) \propto P(S_i \mid O_0, \ldots, O_{i-1}) \cdot P(O_i, \ldots, O_k \mid S_i)$

- To compute most probable sequence of states:
 - Viterbi algorithm.
 - Idea: Find most probable sequence to S_i.
 - Use that information to extend sequence by one state, and repeat.