Recursively Enumerable Languages

A TM accepts a string w if the TM halts in a final state. A TM rejects a string w if the TM halts in a nonfinal state or the TM never halts.

A language L is recursively enumerable if some TM accepts it.

A language L is recursive if some TM accepts it and halts on every input. Note: the complement of a recursive language is also recursive.

L is recursive implies L is recursively enumerable.

Diagonalization

Suppose that we have a 2-D table of bits with an infinite number of rows and columns.

\[
\begin{array}{cccccc}
1 & 0 & 1 & 1 & \ldots \\
0 & \boxed{1} & 1 & 1 & \ldots \\
1 & 0 & \boxed{0} & 0 & \ldots \\
1 & 0 & 1 & \boxed{0} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
\end{array}
\]

We can construct a row that is not in the table by inverting the diagonal elements.
Recursively Enumerable \neq All Languages

Theorem: If S is an infinite countable set, then its powerset is not countable.

Proof: Let $S = \{x_1, x_2, x_3, \ldots\}$ be an infinite countable set.

Let S_1, S_2, S_3, \ldots be any sequence of subsets of S.

Consider the subset $S' = \{x_i : x_i \notin S_i\}$.

S' differs from every S_i, therefore S_1, S_2, S_3, \ldots cannot enumerate all subsets of S.

We can construct a set like S' for any sequence S_1, S_2, S_3, \ldots; therefore, the powerset of S is uncountable.
Theorem: Some languages are not recursively enumerable.

Proof: The set of strings is an infinite countable set.

The set of languages is not countable because it is the powerset of the set of strings.

Recursively enumerable languages are countable because TMs are countable.

Therefore, recursively enumerable languages \subseteq all languages.

Recursive \neq Recursively Enumerable

Theorem: There exists a recursively enumerable language that is not recursive.

Proof: Let M_1, M_2, M_3, \ldots be an enumeration of TMs.

Let x_1, x_2, x_3, \ldots be an enumeration of inputs.

Consider the language:

$L = \{x_i : x_i \text{ is accepted by } M_i\}$
Note that \overline{L} (the complement of L) is a diagonalization.

L is recursively enumerable (we enumerate M_i and run the UTM on M_i and x_i).

\overline{L} is not accepted by any TM, so \overline{L} is not recursively enumerable.

L is not recursive because \overline{L} is not recursive.