Problems, Computability, and Decidability

A function f with domain A is computable iff a TM with any input $a \in A$ halts with $f(a)$ on its tape.

problem = compute function for whole domain
instance = compute function for a single input

If a function f is computable, then some TM solves every instance.

If a function f is uncomputable, then a TM might solve some instances, but not all of them.

A decision problem is when f’s range is $\{\text{yes, no}\}$ (or $\{1, 0\}$ or any two-element set).

A decision problem f is decidable iff f is computable. Otherwise, f is undecidable.

Note that a decidable problem corresponds to a recursive language.

The halting problem is to determine whether TM M_i halts on input x_j.
Undecidability of the Halting Problem

Theorem: The halting problem is undecidable.

Proof by contradiction:
Assume that M_H solves the halting problem.
Construct M' as follows.
On input x_i, M' runs M_H on M_i and x_i.
If M_H says yes, M' enters an infinite loop.
If M_H says no, M' halts.

M' is machine M_n for some integer n.
When M_n runs on x_n, M_H runs on x_n and M_n.
If M_H says yes, then M_n does not halt.
If M_H says no, then M_n halts.
M_H is wrong, which is a contradiction.
Therefore, no TM solves the halting problem.
Reductions

Problem P is undecidable if a solution for problem P can be used to solve the halting problem. This is a reduction of P to the halting problem.

Suppose M_P is a TM for problem P. Try to reduce P to halting problem by:

Examples:

Problem: Does M halt on blank input?
Reduction: Map M, x to a TM that writes x and runs M.

Problem: Does M enter state q?
Reduction: Map M, x to a TM that enters q when M halts on x.