Deterministic Finite Accepters

A deterministic finite accepter M is:

- Q, a list of internal states
- Σ, the input alphabet
- $\delta : Q \times \Sigma \rightarrow Q$, the transition function.
- $q_0 \in Q$, the initial state
- $F \subseteq Q$, the final states

Behavior of DFAs

Start in state q_0.

Repeatedly:

- read the next input symbol and
- move to the next state given by δ.

Accept if the last state is a final state.
Representations of DFAs

Transition Graph:

```
q0 ----> a ----> q1
      |      |      |
      b ----> b ----> q2
```

Transition Table:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>q0</td>
<td>q1</td>
</tr>
<tr>
<td>q1</td>
<td>q0</td>
<td>q2</td>
</tr>
<tr>
<td>q2</td>
<td>q0</td>
<td>q1</td>
</tr>
</tbody>
</table>

DFAs and Languages

Let $\delta^* : Q \times \Sigma^* \rightarrow Q$ be the extended transition function.

$\delta^*(q, w) = q'$ if a DFA in state q goes to state q' after reading w.

Here is a recursive definition for δ^*:

$\delta^*(q, \lambda) = q$

$\delta^*(q, aw) = \delta^*(\delta(q, a), w)$
DFAs and Languages Continued

The language accepted by a DFA M is the set of all strings accepted by M.

$$\mathcal{L}(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

The family of regular languages is the set of languages that can be accepted by DFAs. That is, L is a regular language iff there is a DFA M such that $L = \mathcal{L}(M)$.

Some Properties of DFAs

A DFA can be simulated in time $O(n)$ where n is the length of input string.

Repetition of States:
Let M be a DFA with m states.
Let M read a string w with $|w| \geq m$.
Then M visits at least one state twice.
Proof: M visits $|w| + 1 \geq m + 1$ states.
Conclusion follows from Pigeonhole Principle.
Properties Continued

Closure under complementation:
If \(L \) is a regular language, then so is \(\overline{L} \).
Proof: Let \(M \) be a DFA s.t. \(L = \mathcal{L}(M) \).
Let \(Q \) and \(F \) be \(M \)'s states and final states.
Let \(M' = M \), but with final states \(Q - F \).
\(M' \) accepts \(w \) iff \(M \) rejects \(w \),
so \(\mathcal{L}(M') = \overline{\mathcal{L}(M)} = \overline{L} \)

Finite Languages:
Every finite language is a regular language.
Construction (in class)