The Pumping Lemma

Some languages are not regular languages. The *pumping lemma* can be used to show this. It uses proof by contradiction and the pigeon-hole principle.

Application of pigeonhole principle: If a string is as long or longer than the number of states in a DFA, then some state is visited more than once.

Application of proof by contradiction: Assume L corresponds to some DFA M. Let m be the number of states in M. Create a long string $w \in L$. Show that if M accepts w, then M must accept some string $w' \notin L$. This contradicts assumption that $\mathcal{L}(M) = L$.
Proof of the Pumping Lemma

Theorem: Let L be a regular language. There exists a number m, for all w, if $|w| \geq m$ and $w \in L$, then there exists x, y, z such that

$$w = xyz,$$

$$|xy| \leq m,$$

$$|y| \geq 1,$$

$$xy^i z \subseteq L,$$ i.e., $xy^i z \in L$ for all $i \geq 0$

Proof: Let M be a DFA such that $L = \mathcal{L}(M)$. Let m be the number of states in M. Suppose $|w| \geq m$ and $w \in L$. Then a repetition of states in first m symbols. Let $w = xyz$, where $\delta^*(q_0, x) = \delta^*(q_0, xy)$.

Clearly, any xy^i leads to the same state, from which z leads to the final state.
Using the Pumping Lemma

$L_1 = \{a^nb^n : n \geq 0\}$
Suppose a DFA M_1 accepts L_1.
Let m be the number of states in M_1.
Choose $w = a^mb^m$.
M_1 must repeat states reading a^m.

By the PL, if M_1 accepts a^mb^m, then M_1 accepts strings with more a’s without changing the number of b’s.

Contradicts assumption that M_1 accepts L_1.

$L_2 = \{a^lb^n : l \geq n\}$
Suppose a DFA M_2 accepts L_2.
Let m be the number of states in M_2.
Choose $w = a^mb^m$.
M_2 must repeat states reading a^m.

By the PL, if M_2 accepts a^mb^m, then M_2 accepts one string with fewer a’s without changing the number of b’s.

Contradicts assumption that M_2 accepts L_2.
\(L_3 = \{ww^R : w \in \{a, b\}^*\} \)
Suppose a DFA \(M_3 \) accepts \(L_3 \).
Let \(m \) be the number of states in \(M_3 \).
Choose \(w = a^m b b a^m \).
\(M_3 \) must repeat states reading \(a^m \).

By the PL, if \(M_3 \) accepts \(a^m b b a^m \), then \(M_3 \) accepts strings with more \(a \)'s on the left without changing the number of \(a \)'s on the right.
Contradicts assumption that \(M_3 \) accepts \(L_3 \).

\(L_4 = \{a^{2^k} : k \geq 0\} \)
Suppose a DFA \(M_4 \) accepts \(L_4 \).
Let \(m \) be the number of states in \(M_4 \).
Choose \(w = a^{2^n} \), where \(2^n > m \).
\(M_4 \) must repeat states reading first \(m \) \(a \)'s

By the PL, if \(M_4 \) accepts \(a^{2^n} \), then \(M_4 \) accepts a string with 1 to \(m \) more \(a \)'s.
However \(2^n < 2^n + m < 2^{n+1} \), i.e., the number of \(a \)'s won't be a power of 2.
Contradicts assumption that \(M_4 \) accepts \(L_4 \).
\[L_5 = \{ a^n : n \text{ is not a power of } 2 \} \]
If \(L_5 \) was regular,
then \(\overline{L_5} = L_4 \) would be regular,
which is a contradiction.