1. (40 pts.) As a shorthard for regular expressions, let Σ_a match any single alphabetic letter. Let Σ_p match any single punctuation symbol. Assume that matching letters is case-insensitive, font-insensitive, etc. Write regular expressions for the following:

 (a) Write a regular expression that matches “Aggies” and any variation of “Aggies” produced by adding punctuation symbols between the letters.

 (b) Write a regular expression that matches “Aggies” and any variation of “Aggies” produced by changing, adding, or deleting a single letter.

2. (60 pts.) Determine whether the following problems are decidable or undecidable and prove your answer.

 (a) Given a Turing machine M and a string w as input for M, does M ever read a blank?

 (b) Given a Turing machine M and a string w as input for M, does M ever write a blank?

 (c) Given a Turing machine M, is $L(M)$ a regular grammar?