Analysis of A* Search

To talk about A* search, I will use the following notation:

- $g(s)$ denotes the cost from the initial state to state s.
- $h(s)$ denotes the heuristic estimate of the cost from state s to the goal state.
- $h^*(s)$ denotes the cheapest path cost from state s to a goal state.
- f^* denotes the cheapest path cost from the initial state to a goal state.

Theorem 1 If $0 \leq h(s) \leq h^*(s)$ for all states s, if the search graph is locally finite, and if each edge costs at least one unit, then A* search will find the optimal solution path.

Proof: For all states s on the optimal path, $g(s) + h^*(s) = f^*$. This and $h(s) \leq h^*(s)$ imply that $g(s) + h(s) \leq f^*$ for all states s on the optimal path. Thus, before A* halts, the priority queue will always contain some state from the optimal path with $g(s) + h(s) \leq f^*$.

Any state that is on the optimal path and in the priority queue will always be selected before any suboptimal goal state s_{bad} because $g(s_{bad}) + h(s_{bad}) > f^*$. Therefore, A* search will visit the optimal path, including the optimal goal state, before any suboptimal goal state.

The locally finite and edge cost conditions guarantee a finite search.

End Proof.

To analyze the number of states that A* search visits, I make the following assumptions:

The search graph is a uniform search tree with branching factor b.

$0 \leq h(s) \leq h^*(s)$ for all states s, i.e., h is admissible and never overestimates the true cost. By Theorem 1, this implies that A* search will find the optimal solution.

There is one goal state, which is distance d from the initial state. [Having many goal states or many paths to a single goal state can hurt A* search because it might search all of them.]

All moves are reversible. This means the goal state is reachable from any state.

Each edge costs at least one unit. [To get similar results for IDA* search, I would need to assume that edge costs are positive integers.]

For all states s, $h^*(s) - h(s) \leq \epsilon$. I.e., there is some upper bound on the error.

Lemma 2 Under the above assumptions, A* search will not visit any state that is more than $\epsilon/2$ distance from the optimal path.
Proof: Let s_{bad} be a state that is more than $\epsilon/2$ away from the optimal path. Because each edge costs at least one unit, then s_{bad} is at least $\epsilon/2$ cost away from the optimal path. Let s_{good} be the state on the optimal path closest to s_{bad}. Then, $g(s_{bad}) > g(s_{good}) + \epsilon/2$ and $h^*(s_{bad}) > h^*(s_{good}) + \epsilon/2$. Then:

\[
g(s_{bad}) + h(s_{bad}) \geq g(s_{bad}) + h^*(s_{bad}) - \epsilon
\]
\[
> g(s_{good}) + \epsilon/2 + h^*(s_{good}) + \epsilon/2 - \epsilon
\]
\[
= g(s_{good}) + h^*(s_{good})
\]
\[
= f^*
\]

In the proof of Theorem 1, it was shown that if $0 \leq h(s) \leq h^*(s)$ for every state s, then every state s_{good} on the optimal path has $g(s_{good}) + h(s_{good}) \leq f^*$, and that the priority queue always contains a state from the optimal path. So, because $g(s_{bad}) + h(s_{bad}) > f^*$, the goal state on the optimal path will be visited before s_{bad}.

End Proof.

The converse does not necessarily hold, i.e., it is not necessarily true that every node within $\epsilon/2$ distance of the optimal path will be searched, but this leads to a useful estimate of how many nodes A^* might search. I.e., A^* search will potentially examine every node that (1) is within $\epsilon/2$ distance of the optimal path, and (2) is on a level less than or equal to d.

Lemma 3 Suppose $\epsilon/2 \leq d$. Then, under the above assumptions, there are at most $db^{\epsilon/2} + 1$ states both within distance $\epsilon/2$ of the goal path and within distance d of the initial state.

Proof: I prove the upper bound by mathematical induction.

Basis, $k = 0$, l is any nonnegative integer. The only states that are both within distance 0 of the goal path and within distance l of the initial state are the first $l + 1$ states on the goal path. Note that $lb^k + 1 = l + 1$ when $k = 0$.

Induction. Suppose that at most $lb^k + 1$ states are both within distance k of the goal path ($k \geq 0$) and within distance l of the initial state ($k \leq l$). Counting the children of these states counts all states within distance $k + 1$ of the goal path and distance $l + 1$ from the initial state, except that the initial state needs to be added back in. This results in:

\[
b(lb^k + 1) + 1 = lb^{k+1} + b + 1 = (l + 1)b^{k+1} - b^{k+1} + b + 1 \leq (l + 1)b^{k+1} + 1
\]

Thus, by mathematical induction, there are at most $lb^k + 1$ states both within distance k of the goal path and within distance l of the initial state. Using $k = \epsilon/2$ and $l = d$ results in $db^{\epsilon/2} + 1$ states, proving the lemma.

End Proof.

Lemma 2 and Lemma 3 prove the following theorem.

Theorem 4 Under the above assumptions, A^* search will visit no more than $db^{\epsilon/2} + 1$ states.

The implication is that A^*'s running time is potentially (not necessarily) exponential in ϵ, the amount that h is in error. So, if h is typically within 10% of the true value, you can expect the search time to be $O(db^{0.05d})$. This is a big improvement over blind search because this allows searches that are up to 20 times deeper (depending on how much time it takes to evaluate h). However, the order is still exponential and there will be some point where the “computational cliff” will take effect.