Heuristic Search

Algorithms

Best-First Search .. 2
General Best-First Search Algorithm 3
A^* Search Algorithm ... 4
Iterative Deepening A^* Search Algorithm 5
IDA*'s Contour Procedure 6

Analysis

Properties of A^* Search .. 7
Optimality Proof ... 8
Efficiency of A^* .. 9
Performance of Heuristic Functions 10
Book Experiment Avoiding Back Edges 11

Local Search

Local Search ... 12
Local Optima Example .. 13
Local Search Algorithm .. 14
Examples of Local Search Algorithms 15

Algorithms

Best-First Search

- Simple search algorithms such as IDS do not consider the goodness of states.
- Best-first search visits states according to an evaluation function.
- An evaluation function gives lower numbers to (seemingly) better states.
- Heuristic search prefers to visit states that appear to be better.
- A^* search visits states based on cost from initial to a given state plus heuristic function.
- A heuristic function estimates the cost from a given state to the closest goal state.

General Best-First Search Algorithm

```latex
function \texttt{Best-FS}(initial, Expand, Goal, Eval-Fn) 
q ← \texttt{New-Priority-Queue}() 
\texttt{Insert}(initial, q, Eval-Fn(initial))
while q is not empty 
do current ← \texttt{Extract-Min}(q)
  if Goal(current) then return solution
  for each next in Expand(current) 
do \texttt{Insert}(next, q, Eval-Fn(next))
return failure
```

Analysis

- Properties of A^* Search .. 7
- Optimality Proof ... 8
- Efficiency of A^* .. 9
- Performance of Heuristic Functions 10
- Book Experiment Avoiding Back Edges 11

Local Search

- Local Search ... 12
- Local Optima Example .. 13
- Local Search Algorithm .. 14
- Examples of Local Search Algorithms 15
A* Search Algorithm

function A*(initial, Expand, Goal, Cost, Heuristic)
q ← New-Priority-Queue()
Insert(initial, q, Heuristic(initial))
while q is not empty
do current ← Extract-Min(q)
if Goal(current) then return solution
for each next in Expand(current)
do Insert(next, q, Cost(next) + Heuristic(next))
return failure

Iterative Deepening A* Search Algorithm

function IDA*(initial, Expand, Goal, Cost, Heuristic)
limit ← Heuristic(initial)
loop
do result, limit ← Contour(initial, limit)
if result then return result
if limit = ∞ then return failure

IDA*’s Contour Procedure

function Contour(current, limit)
cost ← Cost(current) + Heuristic(current)
if limit < cost then return null, cost
if Goal(current) then return solution, cost
new-limit ← ∞
for each next in Expand(current)
do result, cost ← Contour(next, limit)
if result then return solution, cost
new-limit ← min(new-limit, cost)
return failure, new-limit

Properties of A* Search
- Let n be a state/node.
- Let $g(n)$ be the cost from the initial state to n.
- Let $h(n)$ be the estimate from n to a goal state.
- Let $f(n) = g(n) + h(n)$.
- h is admissible if it is never an overestimate.
- If h is admissible, then A* finds optimal path.
- If h is admissible with ϵ error and the search space is a uniform tree with one goal state, then A* searches at most $\epsilon/2$ from solution path.

Optimality Proof
- Let f^* be optimal path cost.
- Because h never overestimates, then all states n on optimal path have $f(n) \leq f^*$.
- Any nonoptimal goal state has $f(n) > f^*$.
- Because of priority queue, A* will visit optimal path before any nonoptimal goal state.
Efficiency of A*

- Assume tree-structured state space ($b =$ branching factor, $d =$ goal depth), single goal state, each edge costs 1, and maximum error of ε.
- Any state n more than $\varepsilon/2$ off of solution path has $f(n) = g(n) + h(n) > f^*$.
- All states n on solution path have $f(n) = g(n) + h(n) \leq f^*$.
- A^* and IDA* visit $O(db^{\varepsilon/2})$ states.
- A^* uses $O(db^{\varepsilon/2})$ memory. IDA* uses $O(db)$.

Performance of Heuristic Functions

Consider these 8-puzzle heuristic functions:

- h_1: number of tiles in goal position.
- h_2: Manhattan distance from tiles to goals.
- Both never overestimate and $h_1 \leq h_2$

Characterize by effective branching factor

- Let N states be visited and solution depth be d.
- Solve for x in $N = \sum_{i=0}^{d} x^i$.

<table>
<thead>
<tr>
<th>d</th>
<th>IDS</th>
<th>IDA*(h_1)</th>
<th>IDA*(h_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>52 (2.35)</td>
<td>10 (1.35)</td>
<td>7 (1.17)</td>
</tr>
<tr>
<td>8</td>
<td>569 (2.03)</td>
<td>42 (1.36)</td>
<td>14 (1.11)</td>
</tr>
<tr>
<td>12</td>
<td>5357 (1.92)</td>
<td>315 (1.47)</td>
<td>45 (1.19)</td>
</tr>
<tr>
<td>16</td>
<td>47271 (1.87)</td>
<td>2410 (1.52)</td>
<td>226 (1.28)</td>
</tr>
<tr>
<td>20</td>
<td>17646 (1.55)</td>
<td>764 (1.29)</td>
<td></td>
</tr>
</tbody>
</table>

Local Search

- A local search algorithm keeps track of one state at a time.
- An evaluation function and a selection procedure is used to decide what state to visit next.
- Local search gives up optimality guarantees in hopes of finding good solutions more efficiently.
- The main difficulty is local minima/maxima.

Local Optima Example
Local Search Algorithm

function LOCAL-SEARCH(initial, Expand, Goal, Select)

 current ← initial

loop

 do if Goal(current) then return solution

 current ← Select(Expand(current))

Examples of Local Search Algorithms

- Hill-Climbing, Gradient Descent:
 Select state improving an evaluation function.
- Random-restart hill-climbing:
 Repeat hill climbing from random initial states.
- Simulated Annealing:
 Hill-climbing with randomized selection.
- Genetic Algorithms:
 Maintain a set of “current states.” Crossover generates new states from pairs of states.
- Tabu Search: Like hill-climbing, but avoid recently visited states or recently used operators.