Artificial Neural Networks

Neural Networks
- Biological Neural Networks .. 2
- Artificial Neural Networks ... 3
- ANN Structure ... 4
- ANN Illustration ... 5

Perceptrons
- Perceptron Learning Rule ... 6
- Perceptrons Continued ... 7
- Example of Perceptron Learning (α = 1) 8

Gradient Descent
- Gradient Descent (Linear) .. 9
- The Delta Rule ... 10

Multilayer Networks
- Illustration ... 11
- Sigmoid Activation ... 12
- Plot of Sigmoid Function .. 13
- Applying The Chain Rule .. 14
- Backpropagation .. 15
- Hypertangent Activation Function 16
- Gaussian Activation Function .. 17
- Issues in Neural Networks .. 18

Neural Networks
- Neural networks are inspired by our brains.
- The human brain has about 10^{11} neurons and 10^{14} synapses.
- A neuron consists of a soma (cell body), axons (sends signals), and dendrites (receives signals).
- A synapse connects an axon to a dendrite.
- Given a signal, a synapse might increase (excite) or decrease (inhibit) electrical potential. A neuron fires when its electrical potential reaches a threshold.
- Learning might occur by changes to synapses.

Artificial Neural Networks
- An (artificial) neural network consists of units, connections, and weights. Inputs and outputs are numeric.
ANN Structure

- A typical unit i receives inputs a_{j1}, a_{j2}, \ldots from other units and performs a weighted sum:

 $$in_i = W_{0,i} + \sum_j W_{j,i} a_j$$

- and outputs activation $a_i = g(in_i)$.

- Typically, **input units** store the inputs, **hidden units** transform the inputs into an internal numeric vector, and an **output unit** transforms the hidden values into the prediction.

- An ANN is a function $f(x, W) = a$, where x is an example, W is the weights, and a is the prediction (activation value from output unit).

- Learning is finding a W that minimizes error.

Perceptrons

Perceptron Learning Rule

- A perceptron is a single unit with activation:

 $$a = \text{sign}(W_0 + \sum_j W_j \times x_j)$$

 - sign returns -1 or 1. W_0 is the bias weight.

- One version of the perceptron learning rule is:

 $$in \leftarrow W_0 + \sum_j W_j \times x_j$$

 $$E \leftarrow \max(0, 1 - y \times in)$$

 - if $E > 0$ then

 $$W_0 \leftarrow W_0 + \alpha \times y$$

 $$W_j \leftarrow W_j + \alpha \times x_j \times y$$

 for each input x_j

 - x is the inputs, $y \in \{1, -1\}$ is the target, and $\alpha > 0$ is the learning rate.

Perceptrons Continued

- This learning rule tends to minimize E.

- The perceptron convergence theorem states that if some W classifies all the training examples correctly, then the perceptron learning rule will converge to zero error on the training examples.

- Usually, many **epochs** (passes over the training examples) are needed until convergence.

- If zero error is not possible, use $\alpha \approx 0.1/n$, where n is the number of normalized or standardized inputs.
Example of Perceptron Learning ($\alpha = 1$)

Using $\alpha = 1$:

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>W_0</td>
</tr>
<tr>
<td>x_2</td>
<td>W_1</td>
</tr>
<tr>
<td>x_3</td>
<td>W_2</td>
</tr>
<tr>
<td>x_4</td>
<td>W_3</td>
</tr>
<tr>
<td>y</td>
<td>W_4</td>
</tr>
</tbody>
</table>

0 0 0 1	0 0 0 0 0			
1 1 1 0	1 -1 2 0 1 1 1 -1			
1 1 1 1	1 2 0 1 1 1 -1			
0 0 1 1	0 1 -1 1 1 0 -2			
0 0 0 0	1 -1 2 0 1 1 0 -2			
0 1 0 1	0 1 -1 0 1 1 0 -2			
1 0 0 0	1 1 0 0 1 1 0 -2			
1 0 1 1	1 -1 2 1 2 1 1 -1			
0 1 0 0	-1 2 3 0 2 0 1 -1			

Gradient Descent

Gradient Descent (Linear)

- Suppose activation is a linear function:
 \[a = W_0 + \sum W_j x_j \]
- The Widrow-Hoff (LMS) update rule is:
 \[\text{diff} \leftarrow y - a \]
 \[W_0' = W_0 + \alpha \cdot \text{diff} \]
 \[W_j' = W_j + \alpha \cdot x_j \cdot \text{diff} \text{ for each input } j \]
 where α is the learning rate.
- This update rule tends to minimize squared error.
 \[E(W) = \sum (y - a)^2 \]

The Delta Rule

- Given error $E(W)$, obtain the gradient:
 \[\nabla E(W) = \left[\frac{\partial E}{\partial W_0}, \frac{\partial E}{\partial W_1}, \ldots, \frac{\partial E}{\partial W_n} \right] \]
- To decrease error, use the update rule:
 \[W_j' = W_j - \alpha \frac{\partial E}{\partial W_j} \]
- The LMS update rule can be derived using:
 \[E(W) = (y - (W_0 + \sum W_j x_j))^2 / 2 \]
- For the perceptron learning rule, use:
 \[E(W) = \max(0, 1 - y \cdot (W_0 + \sum W_j x_j)) \]

Multilayer Networks

Illustration

INPUT UNITS	HIDDEN UNITS	OUTPUT UNITS
x_1 | H_5 | a_7
x_2 | H_6 |
x_3 | H_6 |
x_4 | H_6 |
The sigmoid function is defined as:
\[\text{sigmoid}(x) = \frac{1}{1 + e^{-x}} \]

- It is commonly used for ANN activation functions:
 - \[a_i = \text{sigmoid}(i_{in,i}) = \text{sigmoid}(W_{0,i} + \sum_j W_{j,i} a_j) \]
- Note that
 - \[\frac{\partial \text{sigmoid}(x)}{\partial x} = \text{sigmoid}(x)(1 - \text{sigmoid}(x)) \]

Using \(E = (y_i - a_i)^2 \) for output unit \(i \):
\[
\frac{\partial E}{\partial W_{j,i}} = \frac{\partial E}{\partial a_i} \frac{\partial a_i}{\partial in_i} \frac{\partial in_i}{\partial W_{j,i}} = -2(y_i - a_i) a_i(1 - a_i) a_j
\]

For weights from input to hidden units:
\[
\frac{\partial E}{\partial W_{k,j}} = \frac{\partial E}{\partial a_i} \frac{\partial a_i}{\partial in_i} \frac{\partial in_i}{\partial a_j} \frac{\partial a_j}{\partial in_j} \frac{\partial in_j}{\partial W_{k,j}} = -2(y_i - a_i) a_i(1 - a_i) W_{j,i} a_j(1 - a_j) x_k
\]

Backpropagation is an application of the delta rule.
- Update each weight \(W \) using the rule:
 \[
 W \leftarrow W - \alpha \frac{\partial E}{\partial W}
 \]
 where \(\alpha \) is the learning rate.
Hypertangent Activation Function

Gaussian Activation Function

Issues in Neural Networks

- Sufficiently complex ANNs can approximate any “reasonable” function.
 ANNs approx. a preference bias for interpolation.
- How many hidden units and layers?
 What are good initial values?
- One approach to avoid overfitting is:
 Remove “validation” exs. from training exs.
 Train neural network using training exs.
 Choose weights that are best on validation set.
- Faster algorithms might rely on:
 Momentum, a running average of deltas.
 Conjugant Gradient, a second deriv. method,
 or RPROP, update based only on sign.