Planning Definitions

- Planning is finding and choosing a sequence (or a “program”) of actions to achieve goals.
- A planning state is described by specifying which positive literals are true.
- The goal is described by specifying which literals should be true and false.
- Actions are described by specifying what changes occur.
- Search can perform planning. Planning states map to search states, actions to operators.
- A progression planner searches from the initial state to the goal. A regression planner searches from the goal to the initial state.

Planning States and Goals

States and goals can be represented by conjunctions of positive literals.

- Example: Blocks-world with a table T and three blocks named A, B, and C.
- Positive Literals:

 \[\text{on}(A, T), \text{on}(A, B), \text{on}(A, C), \ldots\]

 \[\text{clear}(A), \text{clear}(B), \text{clear}(C)\]

- The state where C is on A and B is by itself:

 \[\text{clear}(C) \land \text{on}(C, A) \land \text{on}(A, T)\]

 \[\land \text{clear}(B) \land \text{on}(B, T)\]

- The goal to have A on B, and B on C:

 \[\text{on}(A, B) \land \text{on}(B, C)\]
Planning Actions

- An action schema can be specified by:
 - **name** and **parameters** of action
 - **preconditions**: what positive literals must be true
 - **effects**: what becomes true and false

- Action schema to move block x from y to z:
 \[
 \text{Action}(\text{move}(x, y, z), \text{Precond: clear}(x) \land \text{on}(x, y) \land \text{clear}(z) \text{ Effect: clear}(y) \land \text{on}(x, z) \land \text{on}(x, y) \land \text{clear}(z))
 \]

- Create a complete, correct set of action schema for the blocks world.

Partial Order Planning

Introduction to Partial Order Planning

- Progression and regression planning require that actions be totally ordered.
- Partial order planning only specifies those orderings that are needed.
- Example: Blocks-world with a table T and four blocks, A, B, C, and D.

- Initial state:
 \[
 \text{Init}(\text{clear}(A) \land \text{on}(A, B) \land \text{on}(B, T) \land \text{clear}(C) \land \text{on}(C, T) \land \text{clear}(D) \land \text{on}(D, T))
 \]

- Goal state:
 \[
 \text{Goal}(\text{on}(C, A) \land \text{on}(B, D))
 \]

Partial Order Causal-Link Planning

- A partial-order plan consists of the following:
 - A set of steps. Start step, operators, finish step. The start and finish steps encode the initial state and goals.
 - A set of orderings between pairs of steps.
 - A set of causal links. Each causal link goes from an effect of one step to a precondition of another step.

Fixing Flaws

- A flaw in a partial-order plan is:
 - a precondition that is not supported by a causal link, or
 - a causal link that is threatened by another step (the threat).

- A flaw can be fixed by:
 - adding a causal link, possibly adding an operator to support the causal link, or
 - ordering the threat before the causal link (“demotion”) of after (“promotion”).

Planning Graphs

Introduction to Planning Graphs

- A planning graph is a sequence of levels corresponding to “time steps,” alternating between “state levels” S_i and “action levels” A_i.
- It starts with state level S_0, which contains the literals true of the initial state.
- An action is in A_i if its preconds. are in S_i. It has edges from its preconds. in S_i and to its effects in S_{i+1}.
- Also, each literal in S_i has a persistence edge to the same literal in S_{i+1}.
Mutual Exclusion (Mutex) Links

- Two actions in A_i have a mutex link if a precondition or effect of one action conflicts with a precondition or effect of the other action.
- Two literals in S_{i+1} have a mutex link if one negates the other or if every pair of actions in A_i achieving them are mutex.
- An action cannot be in A_i if any two preconds. in S_i are mutex.

“Simple” Planning Graph Example

Init(have(Cake))
Goal($\text{have(Cake)} \land \text{eaten(Cake)}$)

Action(eat(Cake)),
 Precond: have(Cake)
 Effect: $\text{eaten(Cake)} \land \neg \text{have(Cake)}$

Action(bake(Cake)),
 Precond: $\neg \text{have(Cake)}$
 Effect: have(Cake)

Initial Action Level

S_0
A_0
S_1

have(Cake)
eat(Cake)
eaten(Cake)

$\neg \text{have(Cake)}$
$\neg \text{eaten(Cake)}$

have(Cake) and eaten(Cake) in S_1 are mutex because keeping have(Cake) is mutex with eat(Cake).

Next Action Level

S_1
A_1
S_2

bake(Cake)
eat(Cake)
eaten(Cake)

have(Cake)
$\neg \text{have(Cake)}$
eaten(Cake)
$\neg \text{eaten(Cake)}$

Both actions to achieve $\neg \text{have(Cake)}$ are mutex with the one action to achieve $\neg \text{eaten(Cake)}$.
Graphplan Algorithm

The main idea is to extract a plan from a planning graph. A search problem is defined by:

1. A state is a subset of literals in a state level.
2. There is an edge from a subset of S_i to a subset of S_{i-1} if there is a mutex-free subset of A_{i-1} with respective effects and preconds.
3. The initial state is the set of goals on the last level S_n of the planning graph.
4. The goal is to reach S_0.