Mapping Reducability

I’m sorry Dave, I’m afraid I can’t do that.
(Hal in 2001: A Space Odyssey)
We formalize the idea of reducibility by giving a definition of *mapping reducibility*, often called *many-one reducibility*.

A function $f : \Sigma^* \rightarrow \Sigma^*$ is a *computable function* if some Turing machine M with any input w halts with $f(w)$ on its tape.

Examples of computable functions: arithmetic operations, constructing a DFA from an NFA, constructing a CFG for the union of two CFGs.
A language A is *mapping reducible* to language B, written $A \leq_m B$, if there is a computable function f such that

$$w \in A \iff f(w) \in B$$

f is called the *reduction* from A to B.

$\begin{array}{c}
\text{Input: } w \\
\text{Reduction: } f(w) \\
\text{Output: } a \\
\end{array}$

$\begin{array}{c}
\text{Accept: } \text{accept} \\
\text{Reject: } \text{reject} \\
\end{array}$
Examples

\[A = \text{set of even numbers} \]
\[B = \text{set of odd numbers} \]
\[f(x) = x + 1 \]
\[x \text{ is an even number iff } f(x) \text{ is an odd number.} \]

\[A = \text{TMs that always halt} \]
\[B = \text{TMs that accept all inputs} \]
\[f(M) = \text{replace each } q_{\text{reject}} \text{ with } q_{\text{accept}} \]
\[M \text{ always halts iff } f(M) \text{ accepts all inputs.} \]
Charactistics of Mapping Reducibility

If \(A \leq_m B \) and \(B \) is decidable, then \(A \) is decidable.

Proof Sketch: Let \(M \) be a decider for \(B \).
Let \(f \) be a reduction from \(A \) to \(B \).
\(M(f(w)) \) is a decider for \(A \).

It follows that:
If \(A \leq_m B \) and \(A \) is undecidable, then \(B \) is undecidable.
If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

Proof Sketch: Let M be a recognizer for B. Let f be a reduction from A to B. $M(f(w))$ is a recognizer for A.

It follows that:
If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable.
Example I: $A_{TM} \leq_m HALT_{TM}$

Need a computable function f such that:

$$\langle M, w \rangle \in A_{TM} \leftrightarrow f(\langle M, w \rangle) \in HALT_{TM}$$

This algorithm computes the reduction:

1. Construct a TM M' such that

$$M'(x) = \begin{cases} \text{accept} & \text{if } M(x) = \text{accept} \\ \text{loop forever} & \text{otherwise} \end{cases}$$

2. Output $\langle M', w \rangle$

This is a reduction because M accepts w iff M' halts on w.
Example II: $EQ_{\text{DFA}} \leq_m E_{\text{DFA}}$

Need a computable function f such that:

$$\langle B, C \rangle \in EQ_{\text{DFA}} \iff f(\langle B, C \rangle) \in E_{\text{DFA}}$$

Define f to output a DFA D such that:

$$L(D) = (L(B) \cap \overline{L(C)}) \cup (\overline{L(B)} \cap L(C))$$

The closure properties of DFAs ensures that we can do this.

This is a reduction because $L(B) = L(C)$ iff $L(D) = \emptyset$.