1. (10 pts.) Consider the following algorithm for single-source shortest paths.

\textbf{Exercise 1} \((G, s, w)\)
\begin{algorithmic}
\For {each \(v \in G.V \)}
\State \(v.d \gets \infty \)
\EndFor
\State \(s.d \gets 0 \)
\State \(continue \gets \text{TRUE} \)
\While {\(continue \neq \text{FALSE} \)}
\State \(continue \gets \text{FALSE} \)
\For {each \((u, v) \in G.E \)}
\State \(x \gets v.d \)
\State \(v.d \gets \min(v.d, u.d + w(u, v)) \)
\If {\(x \neq v.d \)}
\State \(continue \gets \text{TRUE} \)
\EndIf
\EndFor
\EndWhile
\end{algorithmic}

What is the running time of this algorithm? Justify your answer. You might have different answers for different cases. Use \(V \) = number of vertices and \(E \) = number of edges.

2. (10 pts.) Consider the following algorithm for all-pairs shortest paths.

\textbf{Exercise 2} \((G, s, w)\)
\begin{algorithmic}
\For {each \((u, v) \in G.V \times G.V \)}
\State \(D[u, v] \gets \infty \)
\EndFor
\For {each \(v \in G.V \)}
\State \(D[v, v] \gets 0 \)
\EndFor
\State \(continue \gets \text{TRUE} \)
\While {\(continue \neq \text{FALSE} \)}
\State \(continue \gets \text{FALSE} \)
\For {each \((v_1, v_2) \in G.E \)}
\For {each \(u \in G.V \)}
\State \(x \gets D[u, v_2] \)
\State \(D[u, v_2] \gets \min(D[u, v_2], D[u, v_1] + w(v_1, v_2)) \)
\If {\(x \neq D[u, v_2] \)}
\State \(continue \gets \text{TRUE} \)
\EndIf
\EndFor
\EndFor
\EndWhile
\end{algorithmic}

What is the running time of this algorithm? Justify your answer. You might have different answers for different cases. Use \(V \) = number of vertices and \(E \) = number of edges.
3. (10 pts.) Show the execution of the Edmonds-Karp algorithm on the flow network of the following figure.

```
3. (10 pts.) Show the execution of the Edmonds-Karp algorithm on the flow network of the following figure.
```

4. (10 pts.) Instead of using breadth-first search to find an augmenting path, suppose that we find the path with the maximum flow. In pseudocode, provide an \(O((V + E) \log(V + E)) \) algorithm for finding this path.

5. (10 pts.) Construct the string-matching automaton for the pattern \(P = abaaa \) and illustrate its operation on the text string \(T = ababaaabaaaaabaaabbb \).

6. (10 pts.) Suppose that a set of \(n \) meetings need to be scheduled in two rooms over a period of \(T \) time units (each room can be scheduled for up to \(T \) time units). The length of meeting \(i \) lasts \(t_i \) time units, where \(t_i \) is one of two possible values \(a \) and \(b \), that is, each meeting lasts for either \(a \) units long or \(b \) units long. You are free to schedule any meeting at any time, but once meeting \(i \) starts, it stays in that room for \(t_i \) time units. Provide an efficient algorithm to determine if there is a feasible schedule.

7. (10 pts.) Suppose that a set of \(n \) meetings need to be scheduled in two rooms over a period of \(T \) time units. The length of meeting \(i \) lasts \(t_i \) time units, where \(t_i \) can be any positive integer. You are free to schedule any meeting at any time, but once meeting \(i \) starts, it stays in that room for \(t_i \) time units. Show that determining whether a feasible schedule exists is NP-complete. Hint: use SUBSET-SUM.

8. (10 pts.) Suppose that a student has \(n \) requirements, where requirement \(i \) can be satisfied by taking one of the courses in set \(S_i \). It happens that a single course might fulfill more than one requirement, so that the student can take fewer than \(n \) courses to satisfy the requirements. Suppose the student simply want to find a “non-redundant” set of courses \(C \), meaning the courses \(C \) satisfy all \(n \) requirements, but no proper subset of \(C \) satisfies all the requirements. Provide an efficient algorithm to find a non-redundant set.

9. (10 pts.) Consider the same problem as the previous exercise, but in this case, the student wants to find the minimum-size set of courses to meet the requirements. Show that determining whether the minimum-size is \(k \) or less is NP-complete. Hint: Use VERTEX-COVER.

10. (10 pts.) Show that finding the longest simple path between two vertices in a graph is NP-hard.