Amortized Analysis

Definition
Methods
Incrementing a Bit String
Dynamic Tables
In an amortized analysis, we consider the total time of a sequence of operations. Even if a single operation is $O(f(n))$, the average of n operations might be $o(f(n))$.

Examples:
Sequence of **Heapify** calls from **Build-Heap**.
Sequence of calls to **Tree-Successor**.
Repeatedly incrementing a bit string.
Insertions and deletions on a dynamic table.
Make-Set, **Union**, and **Find-Set**.
Methods of Amortized Analysis

Aggregate Method: Directly analyze total time.

Accounting Method:
Assign an amortized cost to each operation.
Show total amortized cost \geq total time.

Potential Method:
Specify a potential function Φ_i after i operations.
Show amortized cost of operation $i =$
\[
\text{time of operation } i + \Phi_i - \Phi_{i-1}
\]
Total amortized cost = total time + $\Phi_n - \Phi_0$.
Show $\Phi_i - \Phi_0 \geq 0$ for all values of i.
Implies total amortized cost \geq total time.
Suppose A is a bit string with $A[0]$ as the lowest order bit. Analyze total number of bit flips after n increments.

INCREMENT(A)

\[
i \leftarrow 0
\]

while $i < A.length$ and $A[i] = 1$

\[
A[i] \leftarrow 0
i \leftarrow i + 1
\]

if $i < A.length$

then $A[i] \leftarrow 1$
Aggregate Method:
Assume n increments starting from all 0s.
$A[0]$ flips every increment for n flips.
$A[1]$ flips every 2nd time for $\leq n/2$ flips.
$A[i]$ flips every 2^ith time for $\leq n/2^i$ flips.

Number of flips $\leq n + \frac{n}{2} + \frac{n}{4} + \ldots$

$$= n \left(1 + \frac{1}{2} + \frac{1}{4} + \ldots \right)$$

$$= 2n \text{ which is } O(n)$$
Accounting Method:
Assume n increments starting from all 0s.
INCREMENT flips exactly one bit from 0 to 1.
Assign an amortized cost of 2 units/increment.
Both units are assigned to the bit that is flipped from 0 to 1.
Use one unit immediately for flip from 0 to 1.
Save other unit for when it is flipped back to 0.
All bit flips are accounted for, so the total amortized cost of $2n$ is \geq number of bit flips.
Potential Method:

Assume n increments starting with all 0 bits.

Let $A_i =$ bit string after the ith increment.

Let $\Phi_i =$ number of bits in A_i equal to 1.

Use an amortized cost of 2 units/increment because $2 = \text{bit flips} + \Phi_i - \Phi_{i-1}$

All bit flips are accounted for, so total amortized cost of $2n = \text{total} + \text{change in potential}$.

Total time is $\leq 2n$ because $\Phi_i - \Phi_0 \geq 0$ for all i.
Dynamic Tables

Assume $T.num$ is number of elements in T.
Assume $T.size$ is number of slots in T.
Assume $T.num = 0$ and $T.size = 1$ initially.

Table-Insert(T, x)

if $T.num = T.size$
then reallocate T with size $2 \cdot T.size$

$T.size \leftarrow 2 \cdot T.size$

$T.num \leftarrow T.num + 1$

insert x into T

Analyze number of insertions $+$
amount of copying during reallocations.
Dynamic Tables, Aggregate Method

Aggregate Method:

Assume n insertions starting from 0 elts.
Assume $T.num$ time for reallocating T.
Assume 1 unit time for rest of `TABLE-INSERT`.

Reallocate when $T.num$ is a power of 2.

Let S = the powers of 2 that are $\leq n$.

$n \geq$ largest value in S. $n/2 \geq$ 2nd largest value.
$n/4 \geq$ 3rd largest value, etc.

$$\sum_{s \in S} s \leq n + n/2 + n/4 + \ldots \leq 2n$$

So insertions + reallocation time $\leq n + 2n = 3n$
Accounting Method:

Let x_i be the ith element that is inserted.

Assign an amortized cost of 3 units/insertion.

Use one unit immediately for inserting x_i.

Save two units for future reallocation: one for x_i and the other for $x_i - s/2$ where $s = T.size$.

When reallocating, all elts are accounted for, so the total cost of $3n$ is \geq time units.
Potential Method:

Let T_i be the table after i elements are inserted.
Let $\Phi_i = 2 \cdot T_i.num - T_i.size = 2 \cdot i - T_i.size$
Assign an amortized cost of 3 units/insertion.

If no reallocation, cost is 1 and
$3 = 1 + \Phi_i - \Phi_{i-1}$ because $\Phi_i = 2 + \Phi_{i-1}$.

If a reallocation, cost is i (need to copy $i - 1$ elts):
$3 = i + \Phi_i - \Phi_{i-1}$ because
$\Phi_i = 2 \cdot i - 2 \cdot (i - 1) = 2$ and
$\Phi_{i-1} = 2 \cdot (i - 1) - (i - 1) = i - 1$.

$\Phi_i - \Phi_0$ is always ≥ 0 so $3n \geq$ total cost.
Suppose deletions are allowed.

\[T\.size \leftarrow T\.size/2 \] when array is 1/4 full.

Assign an amortized cost of 2 units/deletion.

Use one unit immediately for deleting \(x_i \).

Save one unit for reallocation of \(x_i - s/4 \), where \(s = T\.size \).

If space is at a premium, then use a expansion/contraction factor < 2.

In the analysis, each operation will cost more.