Binary Search Trees

Fields
Analysis
Pseudocode
Binary Search Trees

\(T.root \) is the root node of tree \(T \).

\(x.key \) is the key of node \(x \).
\(x.p \) is the parent of \(x \).
\(x.left \) is the left child of \(x \).
\(x.right \) is the right child of \(x \).

Binary search tree property:
If \(y \) is in left subtree of \(x \), then \(y.key < x.key \).
If \(y \) is in the right subtree, then \(x.key < y.key \).

\(n \) is the number of nodes and \(h \) is the height.
Dynamic Set Operations

Tree walking is $\Theta(n)$.

```
TREE-WALK(x)
    if x $\neq$ NIL
        then TREE-WALK(x.left)
        TREE-WALK(x.right)
```

Dynamic set operations are $O(h)$.
h is $\Omega(lg n)$ and $O(n)$.

For n nodes, h can range from $\lfloor lg n \rfloor$ to $n - 1$.

A balanced binary tree has $\Theta(lg n)$ height.
A binary tree of height h has $\leq 2^{h+1} - 1$ nodes.

Note $\lfloor \log_2(2^{h+1} - 1) \rfloor = h$ and $\lfloor \log_2(2^{h+1}) \rfloor = h + 1$

Let $N(h) = \text{maximum number of nodes in a binary tree of height } h$.

Basis: $N(0) = 1 = 2^1 - 1$

Assume: $N(h - 1) = 2^h - 1$

Show: $N(h) = 2^{h+1} - 1$

Induction: Subtrees have height at most $h - 1$

$N(h) = 2N(h-1) + 1 = 2(2^h - 1) + 1 = 2^{h+1} - 1$
Search

binary search trees
operations
number of nodes
▷ search
max and min
successor
insert
delete
delete 2
delete 3
delete 4

\[\text{Tree-Search}(x, k)\]

\begin{align*}
\text{if } x &= \text{NIL} \text{ or } k = x.key \\
\text{then return } x \\
\text{if } k &< x.key \\
\text{then return } \text{Tree-Search}(x.left, k) \\
\text{else return } \text{Tree-Search}(x.right, k)
\end{align*}
Maximum and Minimum

Tree-Maximum\((x)\)
\[
\text{while } x.\text{right} \neq \text{NIL} \\
\quad x \leftarrow x.\text{right} \\
\text{return } x
\]

Tree-Minimum\((x)\)
\[
\text{while } x.\text{left} \neq \text{NIL} \\
\quad x \leftarrow x.\text{left} \\
\text{return } x
\]
Successor

Tree-Successor(x)

\[
\begin{align*}
\text{if } & \ x.\text{right} \neq \text{NIL} \\
\text{then return } & \text{Tree-Minimum}(x.\text{right}) \\
\quad & y \leftarrow x.p \\
\text{while } & \ y \neq \text{NIL} \text{ and } x = y.\text{right} \\
\quad & x \leftarrow y \\
\quad & y \leftarrow x.p
\end{align*}
\]

return y

Tree-Predecessor is similar.
Tree-Insert(T, z)

$y \leftarrow$ NIL

$x \leftarrow T.root$

while $x \neq$ NIL

$y \leftarrow x$

if $z.key < x.key$

then $x \leftarrow x.left$

else $x \leftarrow x.right$

$z.p \leftarrow y$

if $y =$ NIL

then $T.root \leftarrow z$

else if $x.key < y.key$

then $y.left \leftarrow z$

else $y.right \leftarrow z$
Delete

Let \(x \) be the node to be deleted. Deletion has the following cases.

- If \(x \) has no children, replace \(x \) with NIL.
- If \(x \) has one child \(y \), replace \(x \) with \(y \).
- If \(x \) has two children, let \(y \) be the minimum of \(x.right \).
 - If \(y \) is a child of \(x \), replace \(x \) with \(y \).
 - If \(y \) is not a child of \(x \), replace \(y \) with \(y.right \), then replace \(x \) with \(y \).
In the following diagrams, node B is being deleted from the tree.

T_1, T_2, and T_3 are subtrees or NIL.

In the last diagram, T_4 is a subtree whose minimum element is node C.
Delete Part 3

binary search trees
operations
number of nodes
search
max and min
successor
insert
delete
delete 2
delete 3
delete 4
Delete Part 4