Disjoint Sets

Definition
Linked List Representation
Disjoint-Set Forests
A disjoint set data structure supports the following operations. x and y are elements.

- **MAKE-SET(x):** Creates a new set $\{x\}$. x must not be in any other set.
- **UNION(x, y):** Combine the set that contains x with the set that contains y.
- **FIND-SET(x):** $\text{FIND-SET}(x) = \text{FIND-SET}(y)$ iff x and y are in the same set.
Example: Connected components of an undirected graph

\[
\text{CONNECTED-COMPONENTS}(G) \\
\text{for each vertex } v \text{ in graph } G \\
\text{MAKE-SET}(v) \\
\text{for each edge } (u, v) \text{ in graph } G \\
\text{if } \text{FIND-SET}(u) \neq \text{FIND-SET}(v) \\
\text{then UNION}(u, v)
\]
Linked List Representation

- Disjoint sets example
- Linked list operations analysis 1
- Analysis 2
- Disjoint-set forests operations 1
- Operations 2
- $O(\lg n)$ analysis 1
- $O(\lg n)$ analysis 2
- $O(\lg \lg n)$ analysis 1
- $O(\lg \lg n)$ analysis 2
- $O(\lg \lg n)$ analysis 3
Linked List Operations

- **MAKE-SET**(x)

  ```
  set ← new set
  set.head ← x
  set.tail ← x
  set.size ← 1
  x.set ← set
  x.next ← NIL
  ```

- **FIND-SET**(x)

  ```
  return x.set
  ```

- **UNION**(x, y)

  ```
  sx ← FIND-SET(x)
  sy ← FIND-SET(y)
  if sx = sy return
  if sx.size < sy.size then exchange sx ↔ sy
  sx.tail.next ← sy.head
  sx.tail ← sy.tail
  sx.size ← sx.size + sy.size
  while y ≠ NIL
    y.set ← sx
    y ← y.next
  ```
Assume m operations including n MAKE-SETS. Analyze number of assignments to set field.

Using accounting method of amortized analysis:
Use amortized cost $1 + \lg n$ units per MAKE-SET.
Consider an arbitrary element x.
Use one unit immediately for MAKE-SET(x).
Use one unit each time UNION modifies $x.set$.
Amortized Analysis Continued

UNION changes *set* fields of the smaller set, so a change to \(x.set \) at least doubles \(x \)'s set size.

The size of a set cannot exceed \(n = 2^{\lg n} \), so the cost \(\lg n + 1 \) covers all changes to \(x.set \).

Over \(n \) elements, the total amortized cost is \(n(\lg n + 1) \).

There can be \(O(m) \) **FIND-SET** operations, so total time is \(O(m + n \lg n) \).

Easy to show \(n - 1 \) **UNIONS** can make \((n/2) \lg n \) changes to *set* fields, so \(O(m + n \lg n) \) is tight.
Disjoint-Set Forests

- Disjoint sets
- Example
- Linked list
- Operations
- Analysis 1
- Analysis 2

- Disjoint-set forests

operations 1
- $O(\lg n)$ analysis 1
- $O(\lg n)$ analysis 2

operations 2
- $O(\lg \lg n)$ analysis 1
- $O(\lg \lg n)$ analysis 2
- $O(\lg \lg n)$ analysis 3

(a)

(b)
Disjoint-Set Forest Operations

Assume x has fields $parent$ and $rank$.

MAKE-SET(x)

$x.parent \leftarrow x$

$x.rank \leftarrow 0$

FIND-SET(x)

if $x = x.parent$

then return x

else $y \leftarrow$ FIND-SET($x.parent$)

$x.parent \leftarrow y$

return y
Union

\[\text{Union}(x, y) \]

\[x \leftarrow \text{Find-Set}(x) \]
\[y \leftarrow \text{Find-Set}(y) \]
\[\text{if } x = y \text{ return} \]
\[\text{if } x.\text{rank} > y.\text{rank} \]
\[\text{then } y.\text{parent} \leftarrow x \]
\[\text{else } x.\text{parent} \leftarrow y \]
\[\text{if } x.\text{rank} = y.\text{rank} \]
\[\text{then } y.\text{rank} \leftarrow y.\text{rank} + 1 \]
The rank r is \geq the height h of the tree:

Basis: When $r = 0$, then $h = 0$.

Assume: When $r = k$, then $h \leq k$.

Show: When $r = k + 1$, $h \leq k + 1$.

Induction: h can increase only when combining two trees with same r.

A tree with rank r has $\geq 2^r$ nodes.

Basis: When $r = 0$, there is $2^0 = 1$ node.

Assume: When $r = k$, there are $\geq 2^k$ nodes.

Show: When $r = k + 1$, there are $\geq 2^{k+1}$ nodes.

Induction: r increases only when combining two trees with same r. Their union must have $\geq 2(2^k) = 2^{k+1}$ nodes.

Without considering compression, this implies that FIND-SET will traverse $\leq \lg n$ links/call.
Let f be the number of \texttt{FIND-SET}s excluding recursion.

Let l_1, \ldots, l_f be the number of links compressed by calls to \texttt{FIND-SET}. Want to bound $\sum_{i=1}^{f} l_i$. Why?

If a call to \texttt{FIND-SET} compresses l links, then $\geq 2^{l-1}$ nodes are closer to the root. Proof: A subtree of rank $\geq l - 1$ now points to the root. This subtree has $\geq 2^{l-1}$ nodes.
Let \(l \) be the average of \(l_1, \ldots, l_f \).
The number of recursive calls is \(fl \).

It can be shown that
\[
\sum_{i=1}^{f} 2^{l_i-1} \geq f 2^{l-1}.
\]
For example, note that
\[
2^{l-1} + 2^{l+1} > 2^l + 2^l.
\]

There is \(\leq n \lg n \) “distance” to compress because each node is \(\leq \lg n \) away from the root.

\[
\leq n \lg n \text{ distance to compress implies } f 2^{l-1} \leq n \lg n.
\]
Case 1: \(f \leq n/(\lg n) \)
\[
f \leq n/(\lg n) \text{ and } l \leq \lg n \text{ imply } fl \leq n.
\]

Case 2: \(f \geq n/(\lg n) \)

Start with \(f2^{l-1} \leq n \lg n \).

Implies \((\lg f) + l - 1 \leq (\lg n) + (\lg \lg n) \)

Implies \(l - 1 \leq (\lg n) + (\lg \lg n) - (\lg f) \)

\[
\leq (\lg n) + (\lg \lg n) - \lg(n/\lg n)
\]

\[
= (\lg n) + (\lg \lg n) - (\lg n) + (\lg \lg n)
\]

\[
= 2 \lg \lg n.
\]

so \(l \) is \(O(\lg \lg n) \), which implies that the total cost of \(f \) FIND-SETS is \(O(n + fl \lg \lg n) \).