Hash Tables

Direct-Address Tables
Hash Functions
Universal Hashing
Chaining
Open Addressing

Direct-Address Tables
Let \(U = \{0, \ldots, m - 1\} \), the set of possible keys.
Use array \(T[0 \ldots m-1] \) as a direct-address table.
Implies 1-1 correspondence between keys and slots.

Direct-Address-Search \((T, k)\)

```plaintext
return \( T[k] \)
```

Direct-Address-Insert \((T, x)\)

```plaintext
T[x.key] \leftarrow x
```

Direct-Address-Delete \((T, k)\)

```plaintext
T[x.key] \leftarrow nil
```

Advantage: operations are \(\Theta(1) \).
Disadvantage: \(\Theta(|U|) \) space required.

Hash Tables
Let \(K \) be the set of keys to be stored.

Goal: use \(\Theta(|K|) \) space and \(\Theta(1) \) time/op.

Idea: Use array \(T[0 \ldots m - 1] \) as a hash table,
and use a \(\Theta(1) \) hash function \(h \), where
\(h: U \rightarrow \{0, \ldots, m-1\} \) maps from keys to slots.

A *collision* is when two keys map to the same slot.
Good Hash Functions

Division method: \(h(k) = k \mod m \)
- \(m \) is prime, not close to any \(2^i \).

Division variation: \(h(k) = (k \mod M) \mod m \)
- \(M \) is prime, << than \(|U| \), not close to any \(2^i \).
- \(m \) is << than \(M \).

Multiplication method:
- \(h(k) = \lfloor m((kA) \mod 1) \rfloor \)
- \(m \) is a power of 2. \(A = (\sqrt{5} - 1)/2 \)

Universal Hashing

Let \(\mathcal{H} \) be a set of hashing functions.
\(\mathcal{H} \) is universal if \(h(k) = h(k') \) with prob. \(1/m \)
- \(m \) is a prime number.

\(k = \langle k[1], \ldots, k[l] \rangle \), where \(0 \leq k[i] < m \)
- Assign \(a[i] \leftarrow \text{RANDOM}(0, m-1) \)
- \(h(k) = \left(\sum_{i=1}^{l} a[i] \cdot k[i] \right) \mod m \)

The set of possible functions \(h(k) \) is universal.
- \(h(k) = h(k') \) with prob. \(1/m \).
- If \(k[i] \neq k'[i] \), \((a[i] \cdot (k[i] - k'[i])) \mod m \) has equally likely results.

Horner's Method for Division Hash Function

If \(k = \langle k[1], \ldots, k[l] \rangle \), and if \(0 \leq k[i] < r \), then compute hash function by:

\[
h \leftarrow k[1] \mod m \\
\text{for } i \leftarrow 2 \text{ to } l \\
\quad \text{do } h \leftarrow (rh + k[i]) \mod m
\]

Chaining

In chaining, slots are linked lists of the elements that hash to that slot, i.e., collisions.

Consider \(m \) slots, \(n \) elts., load factor \(\alpha = n/m \).

- Worst-case: \(\Theta(n) \) if all elts. hash to same slot.
- Best-case: \(\Theta(1 + \alpha) \), each slot has \(\lfloor \alpha \rfloor \) or \(\lceil \alpha \rceil \).

- Average-case: Assume each slot is equally likely.

- Unsuccessful search: \(\Theta(1 + \alpha) \)
 - This is because average slot length = \(\alpha \).
Chaining, Part 2

Successful search: $\Theta(1 + \alpha)$
Before ith elt. inserted, avg. length $= (i - 1)/m$.
Expected position of ith elt. $= 1 + (i - 1)/m$.

Expected search length is the summation:
\[
\sum_{i=1}^{n} \frac{1}{n} \left(1 + \frac{i - 1}{m}\right) = 1 + \frac{\alpha}{2} - \frac{1}{2m}
\]

Open-Address Hashing

In open addressing, when a collision occurs, probe for an empty slot and insert the new elt. there.

The hash function becomes:
\[h : U \times \{0, \ldots, m-1\} \to \{0, \ldots, m-1\}\]
The probe sequence $\langle h(k, 0), \ldots, h(k, m-1)\rangle$ should include all the slots.

Open-Address Hashing, Part 2

Hash-Insert (T, x)
\[
\text{for } i \leftarrow 0 \text{ to } m-1 \\
\text{do } j \leftarrow h(x.key, i) \\
\text{if } T[j] = \text{NIL} \\
\text{then } T[j] \leftarrow x \\
\text{return } j
\]
error “hash table overflow”

Hash-Delete marks the slot as deleted.
Hash-Search must continue past deleted slots.
Hash-Insert can put new elts. in deleted slots.

Uniform Hashing Analysis

Uniform hashing assumes each open-address probe-sequence is equally likely.

Unsuccessful Search: $\Theta \left(\frac{1}{1-\alpha}\right)$
Let $p_i = \text{prob. exactly } i \text{ probes find full slots.}$
Let $q_i = \text{prob. first } i \text{ probes find full slots.}$
$q_1 = \frac{n}{m} \Rightarrow q_2 = \left(\frac{n}{m}\right) \left(\frac{n-1}{m}\right) < \alpha^2$
$q_i = \prod_{k=0}^{i-1} \frac{n-k}{m-k} \leq \left(\frac{n}{m}\right)^i = \alpha^i$
Uniform Hashing Analysis, Part 2

Average number of probes is:

\[1 + \sum_{i=1}^{n} i p_i = 1 + \sum_{i=1}^{n} q_i \leq \sum_{i=0}^{\infty} \alpha^i = \frac{1}{1 - \alpha} \]

Successful Search: \(\Theta \left(\frac{1}{\alpha} \ln \frac{1}{1 - \alpha} \right) \)

Inserting \(i \)th elt. = unsuccessful search \(i - 1 \) elts.
Average number of probes is:

\[\sum_{i=1}^{\alpha} \left(\frac{1}{n} \left(\frac{1}{1 - (i-1)/m} \right) \right) \leq \frac{1}{\alpha} \ln \frac{1}{1 - \alpha} \]

Performance of Practical Methods

Quadratic Probing assumes \(m \) is a power of 2.

\[h(k, i) = (h'(k) + i + i^2) \mod m \]

Successful Search: \(\Theta \left(\frac{1}{\alpha} \ln \frac{1}{1 - \alpha} \right) \)

Unsuccessful Search: \(\Theta \left(\frac{1}{1 - \alpha} \right) \)

Double Hashing, \(m \) is prime, \(1 \leq h_2(k) \leq m - 1 \)

\[h(k, i) = (h_1(k) + i h_2(k)) \mod m \]

Successful Search: \(\Theta \left(\frac{1}{\alpha} \ln \frac{1}{1 - \alpha} \right) \)

Unsuccessful Search: \(\Theta \left(\frac{1}{1 - \alpha} \right) \)

Performance of Practical Methods

Linear Probing: \(h(k, i) = (h'(k) + i) \mod m \)

Successful Search: \(\Theta \left(\frac{1}{1 - \alpha} \right) \)

Unsuccessful Search: \(\Theta \left(\frac{1}{1 - \alpha} \right) \)

Linear probing suffers from primary clustering, from long runs of occupied slots.

An empty slot preceded by \(i \) full slots gets filled next with probability \((i + 1)/m \).