Chapter 8: Sorting in Linear Time

Lower Bounds for Comparison Sorting
Counting Sort
Radix Sort
Bucket Sort

Comparison Sorting Model

Sorting returns a permutation of its input. There are $n!$ permutations of n elements.

$a_i < a_j$ determines if a_i is before/after a_j.

$a_i < a_j$ chooses between two sets of permutations.

Map permutations to a binary decision tree.
Map each comparison to a node in a tree.
Map each subtree to a subset of permutations.
Map each leaf to a permutation.
Lower Bounds for Comparison Sorting

A binary tree with height h has $\leq 2^h$ leaves.
A binary tree with $n!$ leaves has $h \geq \lg(n!)$, so $h \in \Theta(n \lg n)$.

Worst-case of comparison sorting is $\Omega(n \lg n)$.

Most leaves have $\Omega(n \lg n)$ depth.

There are $\leq 2^d$ leaves at depth $\leq d$.

If $d < \lg(n!) - 1$, then $2^d < n!/2$.

This implies $\geq n!/2$ leaves have $d \geq \lg(n!) - 1$.

Average-case of comparison sorting is $\Omega(n \lg n)$.

Counting Sort

Counting-Sort is $\Theta(n + k)$ and stable.

It assumes that each $A[j] \in \{0, 1, \ldots, k\}$.

Counting-Sort(A, B, k)

$\quad C \leftarrow$ an array of k zeros

\quad for $j \leftarrow 1$ to length[A]

$\quad\quad C[A[j]] \leftarrow C[A[j]] + 1$

$\quad\quad$▷ $C[i]$ is the number of elements equal to i

\quad for $i \leftarrow 2$ to k

$\quad\quad C[i] \leftarrow C[i] + C[i - 1]$

$\quad\quad$▷ $C[i]$ is the number of elements $\leq i$

\quad for $j \leftarrow$ length[A] downto 1

$\quad\quad B[C[A[j]]] \leftarrow A[j]$

$\quad\quad C[A[j]] \leftarrow C[A[j]] - 1$

Radix Sort

Radix-Sort is $\Theta(d(n + k))$.

It assumes that each value has d digits.

Each digit has one of k values.

Radix-Sort(A, d)

\quad for $i \leftarrow 1$ to d

$\quad\quad$ use Counting-Sort to sort A on digit i

Radix-Sort will outperform $\Theta(n \lg n)$

if k is $O(n)$ and d is $o(\lg n)$.
Bucket Sort

Bucket-Sort is $\Theta(n)$ on average if data is uniformly distributed over the interval $[0, 1]$.

Bucket-Sort(A)

$n \leftarrow A\.length$

$B \leftarrow$ an array of n empty lists

for $i \leftarrow 1$ to n

insert $A[i]$ into list $B[n \cdot A[i]]$

for $i \leftarrow 0$ to $n - 1$

sort list $B[i]$ with **Insertion-Sort**

concatenate the lists $B[0]$ to $B[n - 1]$

Example Radix Sort

238	230	230	045
796	934	934	230
756	045	537	238
045 ⇒ 796 ⇒ 238 ⇒ 537			
537	756	045	756
230	537	756	796
934	238	796	934

↑ ↑ ↑

Bucket Sort Analysis

Average Case:

There are n elements and n buckets.

Let n_i be the number of elements in bucket i.

Insertion-Sort on n_i elements is $O(n_i^2)$.

Need to bound $E[n_i^2]$ (expected value of n_i^2).

n_i is binomial with prob. $p = 1/n$ and n trials.

$E[n_i] = np = 1$

$\text{Var}[n_i] = np(1 - p) = 1 - 1/n$

$\text{Var}[n_i] = E[n_i^2] - E[n_i]^2$ implies $E[n_i^2] < 2$

Expected time of second loop is $\Theta(n)$.

Alternative: Bound $\sum_{k=0}^{n} k^2 \binom{n}{k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{n-k}$