Chapter 5: Probabilistic Analysis

Average-Case Analysis
Finding the Maximum Example
Randomizing an Array Example
In practice, many algorithms perform better than their worst-case.

The *average case* is analyzed by:

1. construct a probabilistic model of the input
2. determine the probabilities and running times (or costs) of alternate executions
3. calculate expected running time (or cost)

Through *randomization*, one can often ensure that the probabilisitic model is true.
Example 1: Rolling Dice

- Scenario: Pay n to roll a die n times.
 Payoff: Maximum value of the rolls.
 Question: What’s the best value of n?
- Expected value sums probs. times values.
- For $n = 1$, expected value is:
 \[
 \frac{1}{6} \times (1 - 1) + \frac{1}{6} \times (2 - 1) + \frac{1}{6} \times (3 - 1) + \frac{1}{6} \times (4 - 1) + \frac{1}{6} \times (5 - 1) + \frac{1}{6} \times (6 - 1) = 2.5
 \]
- Expected value for $n = 2$? $n = 3$?
- Ignoring cost, what is the prob. that the maximum value is v after n rolls?
- For prob. that v is 6, easiest to determine prob. of not rolling a six = $(5/6)^n$.
 So prob. that v is 6 = $1 - (5/6)^n$.

average case
- example 1
- example 2
- example 2 model
- example 2 analysis
- example 3
- example 3 analysis
Example 2: Finding the Maximum

```plaintext
MAXIMUM(A)
  max ← A[1]
  for i ← 2 to A.length do
    if max < A[i] then
      max ← A[i]
  return max
```

□ Problem: How many assignments to \(max \)?
□ Best-case: 1 (When does this happen?)
□ Worst-case: \(n \) (When does this happen?)
□ Average-case: \((n + 1)/2 \) is incorrect
Example 2: Probabilistic Model

- Assume A has n distinct numbers. (What is the effect of duplicates?)
- Assume each permutation of the numbers is equally likely. (How can randomization guarantee this?)
- How many permutations are there?
 - What is the probability of the best case?
 - What is the probability of the worst case?
Example 2: Analysis

- On iteration i, \max is assigned a value iff $A[i]$ is the maximum of the first i numbers.
- Probability that $A[i]$ is the maximum of the first i numbers $= 1/i$
- Probability of assignment $= 1/i$, cost $= 1$
- Prob. of no assignment $= (i - 1)/i$, cost $= 0$
- On iteration i, the expected cost is:
 $\left(\frac{1}{i}\right)(1) + \left(\frac{i - 1}{i}\right)(0) = \frac{1}{i}$
- Over the initial assignment and $n - 1$ iterations, the expected cost is:
 $\sum_{i=1}^{n} \frac{1}{i}$ which is between $\ln n$ and $1 + \ln n$
Example 3: Random Permutation of an Array

Randomize-In-Place (A)

\[
\begin{align*}
 n & \leftarrow A.length \\
 \text{for } i & \leftarrow 2 \text{ to } n \text{ do} \\
 & \quad \text{swap } A[i] \leftrightarrow A[\text{Random}(1, i)]
\end{align*}
\]

- Random(a, b) returns an integer r, $a \leq r \leq b$.
- r is equally likely to be any integer between a and b, inclusive.
Example 3: Analysis

- For any permutation of the first i values, there is exactly one way to permute the first $i-1$ values, and then swap $A[i]$ into the correct position.
- So after iteration i, the first i values have been randomly permuted, making the loop invariant true the next iteration.