Chapter 5: Probabilistic Analysis

Average-Case Analysis
Finding the Maximum Example
Randomizing an Array Example

Average-Case Analysis

- In practice, many algorithms perform better than their worst-case.
- The **average case** is analyzed by:
 1. construct a probabilistic model of the input
 2. determine the probabilities and running times (or costs) of alternate executions
 3. calculate expected running time (or cost)
- Through **randomization**, one can often ensure that the probabilistic model is true.

Example 1: Rolling Dice

Scenario: Pay n to roll a die n times.

Payoff: Maximum value of the rolls.

Question: What's the best value of n?

- Expected value sums probabilities times values.
- For $n = 1$, expected value is:

 \[
 \frac{1}{6} \times (1 - 1) + \frac{1}{6} \times (2 - 1) + \frac{1}{6} \times (3 - 1) + \frac{1}{6} \times (4 - 1) + \frac{1}{6} \times (5 - 1) + \frac{1}{6} \times (6 - 1) = 2.5
 \]

- Expected value for $n = 2$? $n = 3$?
- Ignoring cost, what is the prob. that the maximum value is v after n rolls?
- For prob. that v is 6, easiest to determine prob. of not rolling a six = $(5/6)^n$.
 - So prob. that v is 6 = $1 - (5/6)^n$.

Example 1: Rolling Dice

- **Scenario:** Pay n to roll a die n times.
 - **Payoff:** Maximum value of the rolls.
 - **Question:** What’s the best value of n?
- **Expected value sums probabilities times values.**
- For $n = 1$, expected value is:

 \[
 \frac{1}{6} \times (1 - 1) + \frac{1}{6} \times (2 - 1) + \frac{1}{6} \times (3 - 1) + \frac{1}{6} \times (4 - 1) + \frac{1}{6} \times (5 - 1) + \frac{1}{6} \times (6 - 1) = 2.5
 \]

- **Expected value for $n = 2$? $n = 3$?**
- **Ignoring cost, what is the prob. that the maximum value is v after n rolls?**
- For prob. that v is 6, easiest to determine prob. of not rolling a six = $(5/6)^n$.
 - So prob. that v is 6 = $1 - (5/6)^n$.

Example 2: Finding the Maximum

MAXIMUM(A)
 max ← A[1]
 for i ← 2 to A.length do
 if max < A[i] then
 max ← A[i]
 return max

Problem: How many assignments to max?
- Best-case: 1 (When does this happen?)
- Worst-case: n (When does this happen?)
- Average-case: \((n + 1)/2 \) is incorrect

Example 2: Probablistic Model
- Assume A has n distinct numbers. (What is the effect of duplicates?)
- Assume each permutation of the numbers is equally likely. (How can randomization guarantee this?)
- How many permutations are there?
 - What is the probability of the best case?
 - What is the probability of the worst case?

Example 2: Analysis
- On iteration i, max is assigned a value iff A[i] is the maximum of the first i numbers.
- Probability that A[i] is the maximum of the first i numbers = \(1/i \)
- Probability of assignment = \(1/i \), cost = 1
 - Prob. of no assignment = \((i-1)/i \), cost = 0
- On iteration i, the expected cost is: \((1/i)(1) + ((i-1)/i)(0) = 1/i \)
- Over the initial assignment and n−1 iterations, the expected cost is:
 \[\sum_{i=1}^{n-1} \frac{1}{i} \]
 which is between \(\ln n \) and \(1 + \ln n \)

Example 3: Random Permutation of an Array

RANDOMIZE-IN-PLACE(A)
 n ← A.length
 for i ← 2 to n do
 swap A[i] ↔ A[Random(1, i)]

Random(a, b) returns an integer r, a ≤ r ≤ b.
- r is equally likely to be any integer between a and b, inclusive.
Example 3: Analysis

- For any permutation of the first i values, there is exactly one way to permute the first $i-1$ values, and then swap $A[i]$ into the correct position.
- So after iteration i, the first i values have been randomly permuted, making the loop invariant true the next iteration.