
Evaluating a DVS Scheme for Real-Time Embedded Systems ∗

Ruibin Xu, Daniel Mossé, Rami Melhem
Computer Science Department, University of Pittsburgh

{xruibin,mosse,melhem}@cs.pitt.edu

Abstract

Dynamic voltage scaling (DVS) has become a
well-known and effective technique to exploit energy-
performance trade-off in real-time embedded systems
where energy imposes a major constraint. We focus
on frame-based real-time systems that execute variable
workloads with the goal of minimizing expected energy
consumption in the system while still meeting the deadlines.
In our separate publication, we proposed a new DVS
scheme that incorporates the dynamic behavior of the tasks
into the speed schedule and aims to minimize the expected
energy consumption in the system. The new DVS scheme
was derived based on the assumption of unrestricted
continuous frequency. However, it remains unknown how
the new DVS scheme performs in practical situations. In
this paper, we first give a simple example through which we
demonstrate the new DVS scheme and compare it with the
existing DVS schemes. Then we present evaluation results
to show that the new DVS scheme achieves significant
energy savings over the existing schemes.

1 Introduction

Energy conservation is critically important for many
real-time systems such as battery-operated embedded sys-
tems which have a restricted energy budget . Dynamic volt-
age scaling (DVS), which involves dynamically adjusting
the voltage and frequency of the CPU, has become a well-
known technique in power management for real-time em-
bedded systems. Through DVS, quadratic energy savings
can be achieved at the expense of just linear performance
loss [14, 4]. Thus, the execution of tasks can be slowed
down in order to save energy, as long as the deadline con-
straints are not violated. A natural problem that rises from
this context is how to minimize the energy consumption in
the system while still meeting the deadlines. The problem is
often reduced to determining a task’s speed (or equivalently,

∗This work has been supported by NSF grant ANI-0125704 and ANI-
0325353.

determining the amount of time allotted to a task) before it
is scheduled to execute in the system.

The systems under our consideration are frame-based
hard real-time embedded systems that execute variable
workloads. The tasks in these systems exhibits dynamic be-
havior in the sense that they usually run for less than their
worst-case execution times (WCET) and the execution time
of the tasks is unpredictable before their execution. There-
fore, the design goal of DVS schemes becomesminimizing
the expected (total) energy consumptionin the system.

In [12], we proposed a new DVS scheme that incorpo-
rates the dynamic behavior of the tasks into the speed sched-
ule and aims to minimize the expected energy consump-
tion in the system. To our knowledge, this is the first DVS
scheme that is designed explicitly to Minimize the Expected
Energy Consumption for frame-based real-time systems.
Therefore, we call the new DVS scheme MEEC throughout
this paper. The MEEC scheme was derived based on the
assumption of unrestricted continuous frequency. We also
extended it to take into consideration the practical issues,
such as minimum and maximum frequency restriction, and
provided solutions to the problems. However, it remains un-
known how the MEEC scheme performs under all the prac-
tical considerations. In this paper, we first give a simple
example through which we demonstrate the MEEC scheme
and compare it with the existing DVS schemes. We show
that failure to capture the dynamic behavior of the tasks by
the existing DVS schemes and naive use of dynamic be-
havior information will lead to suboptimal power manage-
ment. Then we present extensive evaluation results, both on
synthetic and real-life workloads, to show that the MEEC
scheme can achieve significant energy savings over the ex-
isting schemes.

This paper is organized in the following way. We first
present the related work in Section 2. The system and
task model are described in Section 3. We demonstrate the
MEEC scheme and compare it with the existing schemes in
Section 4. Evaluation results are presented in Section 5. We
end the paper in Section 6 with concluding remarks.

1

2 Related Work
Although much work has been done on exploring DVS

in real-time environments, we will focus on the related work
that takes into consideration actual (not worst-case) execu-
tion time of tasks. This is because real-time applications
usually exhibit a large variation in actual execution times
(e.g., [3] reported that the ratio of the worst-case execution
time to the best-case execution time can be as high as 10
in typical applications; our measurements in [10] show that
this ratio can be as high as 100), and thus the DVS schemes
that use exclusively worst-case execution time lack the ad-
vantage of unused computation time. Besides frame-based
real-time systems, we will also focus on the related work
that applies to periodic real-time systems because frame-
based real-time system is a special case of periodic real-time
system.

DVS in real-time applications is categorized asinter-task
or intra-taskvoltage scaling [5]. Inter-task schedules speed
changes at each task boundary, while intra-task schedules
speed changes within a single task. For inter-task voltage
scaling, Mossé et al. [8] introduced the concept ofspecula-
tive speed reductionand proposed three DVS schemes with
different speed reduction aggressiveness for frame-based
real-time systems. Aydin et al. [2] and Pillai et al. [9]
independently proposed DVS schemes for achieving high
energy savings for periodic real-time systems. They both
precompute a static optimal schedule assuming that each
task runs for WCEC and when a task runs for less than its
WCEC, the scheduler uses the slack to create a new sched-
ule for the remaining tasks. However, the exclusive use of
static information in computing speed schedules by [8, 2, 9]
leads to suboptimal power management for the system. The
MEEC scheme makes use of both static and dynamic in-
formation to design the speed schedule. To be able to nav-
igate the full spectrum of speculative speed reduction, in
[2] system designers can set a parameter to control the de-
gree of speed reduction aggressiveness. The MEEC scheme
chooses the degree of speed reduction aggressiveness auto-
matically, based the probability distribution of the workload
of the tasks, to minimize the expected energy consumption.

For intra-task voltage scaling, Lorch et al. [6] have
shown that if a task’s computational requirement is only
known probabilistically, there is no constant optimal speed
for the task and the expected energy consumption is mini-
mized by gradually increasing speed as the task progresses,
which is an approach named asProcessor Acceleration to
Conserve Energy(PACE). Practical PACE (PPACE) [13]
takes into consideration a number of practical issues and
improves the performance of PACE. However, PACE and
PPACE have only been studied for single task when consid-
ering hard real-time guarantee. In [7], PACE is used for soft
real-time systems when the system has only one task but
the maximum speed is used when the system has multiple

tasks. In [12], we presented the theoretical results of using
PACE for multiple tasks with a single hard deadline (frame
length). We also show that a naive extension of PACE for
multiple tasks is not recommended in Section 4.

AbouGhazaleh et al. [1] proposed a hybrid compiler-
operating system intra-task DVS scheme for energy con-
sumption of time-sensitive embedded applications. The
MEEC scheme is implemented at the operating system level
and assumes no access to application source codes.

3 Task and System Model

We consider a frame-based task model withN peri-
odic tasks in the system, all ready at time zero. The task
set is denoted byT = {T1, T2, . . . , TN}. Each taskTi

(1 ≤ i ≤ N) is characterized by its worst-case execution
cycles (WCEC)Wi and the probability density function of
its execution cyclesPi(x), which denotes the probability
that taskTi executes forx (1 ≤ x ≤ Wi) cycles. Obvi-
ously, we have

∑Wi

x=1 Pi(x) = 1 andPi(Wi) 6= 0. The
average-case execution cycles (ACEC) ofTi can be com-
puted as

∑Wi

x=1 Pi(x)x. All task periods are identical and
all task deadlines are equal to their period. The common
deadline/period (also known as frame length) is denoted by
D. The execution of the frame is to be repeated and all
tasks must be executed during each frame in the order of
T1, T2, . . . , TN . Thus, the tasks can be treated as sequential
sections of a single application. If the execution order of
the tasks is flexible, the ordering strategies can be found in
[12].

The tasks are to be executed on a variable voltage pro-
cessor with the ability to dynamically adjust its frequency
and voltage on application requests. Because processor is
the major power consumer for many embedded systems, re-
ducing processor energy consumption has a significant im-
pact on the overall system energy consumption. In deriving
the MEEC scheme [12], we assume that the processor fre-
quency can be adjusted continuously from 0 to infinity. We
also discuss the more realistic cases, such as the proces-
sor has minimum and maximum frequencies, in [12]. The
processor power consumption when running at frequency
f is c0 + c1f

α (α is a constant that is at least 2) where
c0 andc1 denote the power consumption of the processor
when idle and the maximum dynamic power respectively.
The dynamic power is determined by the processor operat-
ing frequency and the maximum dynamic power is the dy-
namic power consumed when the processor is operating at
the maximum frequency.

4 The DVS Schemes

In this section, we give a simple example through which
we demonstrate the MEEC scheme and compare it with the

2

Table 1. The parameters for the 3 tasks in the
simple example

Task W P(x) ACEC

T1 2 .9, .1 1.1
T2 4 .9, 0, 0, .1 1.3
T3 2 .5, .5 1.5
T̂ 8 0, 0, .405, .45, .045, .045, 0.05, .005 3.9

existing schemes.

Example Suppose that there are 3 tasks in the frame-
based real-time system with a frame length of 14 time units.
The workload of a task in expressed insuper cycles. A su-
per cycle consists of a certain number of CPU cycles, which
can be computed in order to keep the overhead of DVS low
[1]. The tasks are required to be executed in the order of
T1, T2, andT3. The parameters for the 3 tasks are shown in
Table 1. We also treat the three tasks as the three sequential
sections of a single task̂T and its parameters are computed
from those of the 3 tasks.̂T is used for the naive extension
of PACE shown at the end of this section. For the proces-
sor, we suppose thatc0 = 0 andc1 = 1. The maximum
speed of the processor is 1 super cycle per time unit and the
minimum speed of the processor is 0.

We start by reviewing the existing DVS schemes, which
can be categorized into 3 schemes: proportional scheme,
greedy scheme, and statistical scheme. The proportional
scheme and greedy scheme only make use of WCEC and
deadline information. The proportional scheme distributes
the slack proportionally among all unexecuted tasks. Thus,
in the example, the proportional scheme will start execut-
ing T1 using speed2+4+2

14
= 0.5714. The greedy scheme

is more aggressive, because it gives all the slack to the next
ready-to-run task. Therefore, the greedy scheme will start
executingT1 using speed 2

14−(4+2)/1 = 0.25. Note that
the greedy scheme is using the lowest possible speed to
execute the next task. The statistical scheme tries to take
advantage of the average-case execution cycles (ACEC)
of the tasks, to distribute the reclaimed slack, the natu-
ral slack, and the slack that would appear in the system if
other tasks were to finish early. To guarantee that the dead-
line is not missed, the statistical scheme chooses the max-
imum of the speed obtained from the greedy scheme and
the speed computed based the ACEC of the tasks. Thus,
the statistical scheme will start executingT1 using speed
max(0.25, 1.1+1.3+1.5

14) = 0.2786.
After a task finishes, the system reclaims the slack cre-

ated by the task if it runs for less than its WCEC, and com-
pute the speed of the next task recursively. This is also
a common part of all dynamic-claiming DVS schemes, as
follows. Let us see how they compute the speed forT2

after T1 finishes. Suppose thatT1 only runs for 1 super

cycle. Then the time left for executingT2 andT3 in the
proportional scheme is14 − 1

0.5714
= 12.2499, and speed

4+2
12.2499 = 0.4898 will be used to executeT2. Similarly,
the greedy scheme will use speed 4

14−1/0.25−2/1 = 0.5

to executeT2, and the statistical scheme will use speed
max(4

14−1/0.2786−2/1,
1.3+1.5

14−1/0.2786) = 0.4756 to execute
T2.

Intuitively, when tasks tend to run close to their WCECs,
the proportional scheme would perform well; when tasks
tend to run much less than their WCECs, the greedy scheme
would have good performance. The statistical scheme tries
to strike a balance between proportional scheme and greedy
scheme. However, none of them is optimal in terms of min-
imizing the expected energy consumption in the system.

The MEEC scheme incorporates the dynamic behavior
of the tasks into the speed schedule. The dynamic behavior
of the tasks is captured by the probability density function
of the workload of the tasks, which is represented by his-
tograms in practice. When using profiling to obtain WCEC
and ACEC, the probability density function of the workload
of the tasks can be also learned at the same time, only re-
quiring certain amount of additional storage.

DVS Algorithm The MEEC scheme is divided into two
phases: (a) the offline phase precomputes the speed sched-
ule, which consists of the percentage factorβi for each task
Ti. The percentage factorβi determines the speed to ex-
ecuteTi: whenTi is ready to execute and the time left in
the frame to executeTi, Ti+1, . . . , TN is d, then timeβid

is allocated to executeTi. The algorithm computes the per-
centage factors in the reverse order, that is, first compute
βN , thenβN−1 , . . ., and lastβ1. The value ofβN is al-
ways100% and the other percentage factors can be com-
puted recursively and efficiently thanks to the nice property
of energy function of the tasks. More details can be found
in [12]; (b) the online phase is invoked before the execu-
tion of each task, obtaining the time left in the frame and
computing the execution speed for the task: when starting
executing taskTi and having timed left, set the speed toWi

βid
(the actual speed value needs to be adjusted according to the
available discrete speeds of the processor). Both phases are
efficient: the offline phase runs in polynomial time and the
online phase only takes constant time.

In the example, the percentage factors forT1, T2, T3 can
be computed to be equal to39.38%, 76.19%, 100%, respec-
tively. Thus, the MEEC scheme will use speed 2

39.38%×14 =
0.3628 to executeT1. If T1 runs for 1 super cycle, then the
time left for executingT2 andT3 is 14− 1

0.3628 = 11.2737.
Then the MEEC scheme will use speed 4

76.19%×11.2737
=

0.4657 to executeT2. Table 3 shows the expected energy
consumption per frame for all DVS schemes and the sav-
ings of the MEEC scheme over the other schemes. In [12],
we prove that the MEEC scheme minimizes the expected
energy consumption in the system under the assumption of

3

Table 2. The comparison of all DVS schemes
for the simple example

Scheme Expected energy Saving
consumption per frame

naive PACE 0.7953 23%
proportional 0.7733 21%
greedy 0.7388 17%
statistical 0.6771 10%
MEEC 0.6097 −

unrestricted continuous frequency.
Finally, we show through the simple example that a naive

extension of PACE (or, naive PACE for short) cannot obtain
energy savings over the DVS schemes that do not use intra-
task voltage scaling. Since PACE has only been studied for
a single task, the naive PACE treats all the tasks as a single
super task and derives its parameters (WCEC and probabil-
ity distribution of the workload) from those of the original
tasks. For the example, the parameters for the super task
T̂ are shown in Table 1. For this super task, using PACE
[6] will result in expected energy consumption per frame of
0.7953, which is the worst of all DVS schemes discussed
so far. The reason why the naive PACE fails is that treating
all tasks as a single super task results in loss of information
(e.g., the naive PACE cannot determine when tasks termi-
nate), losing the opportunity for dynamic slack reclamation.
For instance, if taskT1 runs only for 1 super cycle, we can
be sure that the rest of workload in the current frame is at
most 6 super cycles. However, the naive PACE still assumes
that the rest of workload is 7 super cycles in the worst case.
In [12], we show that PACE must be used for executing in-
dividual tasks in order to obtain further energy savings over
the DVS schemes that do not use intra-task voltage scaling.

5 Evaluation

The optimality of the MEEC scheme [12] only holds if
we assume unrestricted continuous frequency which does
not hold in practice. Therefore, we also discuss the is-
sues that arise when our DVS scheme is used in practice
and provide solutions to the problems in [12]. However, it
remains unknown how the MEEC scheme performs under
those practical considerations. To answer this question, we
conducted extensive simulations for different power models
and different workloads.

5.1 Power Models

We used two power models in our simulation. The first
power model is a synthetic processor that strictly conforms
to thep(f) = f3 power-frequency relation and has 10 dis-
crete frequencies ranging from 100MHz to 1000MHz with

Table 3. XScale speed settings and power
consumptions

Speed (MHz) 150 400 600 800 1000
Voltage (V) 0.75 1.0 1.3 1.6 1.8
Power (mW) 80 170 400 900 1600

100MHz step; its idle power is zero. The second power
model is the Intel XScale (Table 3) [11]. For the idle power
of Intel XScale, we assume that the CPU operates at the
lowest frequency (i.e., 150 MHz) when idle. This is equiva-
lent to say that the idle power is 80 mW. The power function
for XScale used in derivingβi’s is

p(f) = 80 + 1520(
f

1000
)3 (1)

wheref is the frequency. Figure 1 shows that Equation
(1) is a good approximation of the actual power function of
Intel XScale.

 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000

po
w

er
(m

W
)

frequency(MHz)

actual power
80+1520(f/1000)3

Figure 1. Approximate power function for Intel
XScale

5.2 Synthetic Workloads

A frame-based real-time systems is characterized by the
number of tasks, the WCEC of each task, the probability
distribution of the workload of each task, the frame length.
We simulated system that have 5, 10, 15, 20 tasks, respec-
tively. We only show the results for the systems with 5 tasks
because the results for systems with different number of
tasks are similar. The WCEC of each task is randomly gen-
erated from 10,000,000 cycles to 1,000,000,000 cycles. The
probability density function of each task’s actual execution
cycles is randomly chosen from 6 representative distribu-
tions shown in Figure 2. The bin width of the histograms
denoting the probability density functions is 1,000,000 cy-
cles. For each combination of the tasks, we computed the

4

worst-case finishing time (t) for a frame running at the high-
est speed. Then we varied the frame length from1.2t to
4t. For each simulated system (i.e., for each run with a
set of tasks), we evaluated 8 DVS schemes: proportional
without PACE (P), proportional with PACE1 (PP), greedy
without PACE (G), greedy with PACE (GP), statistical with-
out PACE (S), statistical with PACE (SP), MEEC without
PACE (M), MEEC with PACE (MP). For each experiment,
we generated 100,000 frames and computed the average en-
ergy consumption per frame for each scheme. Under this
experimental setup, we conducted over one million runs and
averaged the results (which are shown here).

cycle

pdf

(a) Uniform

cycle

pdf

(b) Unimodal1

cycle

pdf

(c) Unimodel2

cycle

pdf

(d) Unimodal3

cycle

pdf

(e) Bimodal1

cycle

pdf

(f) Bimodal2

Figure 2. Candidate probability density func-
tions

For all the simulations using the synthetic CPU, the best
scheme is always scheme M or MP, but scheme MP is only
better than scheme M for 13.6% of the time with an average
saving of 1.2% over scheme M. For all the simulations using
XScale, the best scheme is always scheme M. Note that, in
the simulations, we ignore the speed change overhead and
online scheduling overhead, and thus we favor schemes us-
ing PACE. For the other schemes, scheme PP outperforms
scheme P most of the time, but scheme G (S) outperforms
scheme GP (SP) most of the time. The simulation results
support our conjectures about using PACE in frame-based
real-time systems in [12]. Therefore, PACE is not recom-
mended in the MEEC scheme.

Next, we compare the MEEC scheme with other
schemes, all without using PACE. Figure 3 shows the max-
imum and average energy savings of our scheme over other
schemes for both the synthetic CPU and XScale. From the
figure we can see that the MEEC scheme achieves an av-

1When the time allocated to execute a task is determined, use PACE
technique to execute this task within the allocated time. The same holds
for using PACE for other schemes.

erage of20.45% (up to 33.45%) energy savings over the
next best scheme (proportional) for the synthetic CPU, and
an average of6.52% (up to 20.85%) energy savings over
the next best scheme (statistical) for XScale. The energy
savings are significant. The two key factors that affect the
energy savings are the minimum speed of the CPU and
the number of speeds available from the CPU. In comput-
ing the speed schedules, the MEEC scheme assumes unre-
stricted continuous frequency. Because of the convexity of
the power function, high speed is not usually obtained by
the MEEC scheme. But low speed is desired because the
MEEC scheme can navigate the full spectrum of available
speeds and can find the best speed that minimizes the ex-
pected energy consumption. The importance of the number
of speeds available from the CPU is obvious given that we
need to convert the continuous speeds to discrete speeds.
Therefore, because the minimum speed of the synthetic
CPU is less than that of XScale and the number of speeds of
the synthetic CPU is greater than that of XScale, the energy
saving for XScale is less than the synthetic CPU.

0

10

20

30

40

50

60

70

80

90

Synthetic
CPU, Max

Synthetic
CPU, Mean

XScale, Max XScale, Mean

Power model

E
n

e
rg

y
 s

a
v

in
g

(%
) vs. proportional

vs. greedy

vs. statistical

Figure 3. Energy savings of the MEEC scheme
over other schemes for the synthetic work-
load

5.3 Automatic Target Recognition (ATR)

The ATR application2 does pattern matching of targets in
images. In ATR, the regions of interest (ROI) in one image
are detected and each ROI is compared with all the tem-
plates. The number of target detections in each frame varies
from 0 to 8 detections. Image processing time is propor-
tional to the number of detections within an image.

In our system model, a front-end is responsible for col-
lecting images and sending the images periodically to a
back-end equipped with an Intel XScale CPU for target
recognition. The back-end is required to finish process-
ing all the images that it receives by the end of the pe-
riod (frame) in order to process the next batch of images

2The original code and data for this application were provided by our
industrial research partners

5

in a timely fashion. The period is 100 ms and the front-end
sends 1 to 6 images to the back-end for one period.

Each task processes an image with 1 to 8 ROIs. We ob-
tained the probability distribution of the workload of the
task by profiling on a training image set, then precomputed
the speed schedule (that is, computed theβi values, see Sec-
tion 4) for having1, 2, 3, 4, 5, 6 images to be processed in
one period (frame), respectively. The six speed schedules
are stored in the back-end. When a period begins, the back-
end counts the number of images received and applies the
corresponding speed schedule. Figure 4 shows the energy
savings of the MEEC scheme over other schemes when the
back-end has1, 2, 3, 4, 5, 6 images to process. From the fig-
ure we can see that the MEEC scheme can achieve an av-
erage of 11.04% energy savings (not counting the case for
1 image because all schemes achieve the same performance
in this case) over the next best scheme (statistical).

0

5

10

15

20

25

1 2 3 4 5 6 average

Number of images

E
n

e
rg

y
 s

a
v
in

g
(%

)

vs. proportional

vs. greedy

vs. statistical

Figure 4. Energy savings of the MEEC scheme
over other schemes for ATR

6 Conclusions

In this paper, we demonstrate and present extensive eval-
uations of the MEEC scheme proposed in [12]. We first re-
view the existing DVS schemes and demonstrate the MEEC
scheme through a simple example. Then we evaluate the
existing DVS schemes and the MEEC scheme through dif-
ferent power models and different workloads. Evaluation
results show that the MEEC scheme can achieve significant
energy savings over the existing schemes. Another impor-
tant conclusion from this work is the demonstration that us-
ing only static information or aggregating dynamic informa-
tion, even with probabilistic techniques, will not produceas
good results as when dynamic information for each task is
considered separately.

Future work will investigate the case of the problem
where different tasks have different deadlines.

References

[1] N. AbouGhazaleh, D. Mossé, B. Childers, R. Melhem,
and Matthew Craven. Collaborative Operating System

and Compiler Power Management for Real-Time Ap-
plications. InRTAS, May 2003.

[2] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-
Alvarez. Dynamic and Aggressive Scheduling Tech-
niques for Power-Aware Real-Time Systems. InRTSS,
pages 95–105, December 2001.

[3] R. Ernst and W. Ye. Embedded Program Timing Anal-
ysis based on Path Clustering and Architecture Classi-
fication. InICCAD, San Jose, CA, 1997.

[4] I. Hong, G. Qu, M. Potkonjak, and M. Srivastava.
Synthesis Techniques for Low-Power Hard Real-Time
Systems on Variable Voltage Processors. InRTSS,
Madrid, Spain, December 1998.

[5] W. Kim, D. Shin, H. Yun, J. Kim, and S. Min. Perfor-
mance Comparison of Dynamic Voltage Scaling Al-
gorithms for Hard Real-Time Systems. InRTSS, De-
cember 2002.

[6] J. Lorch and A. Smith. Improving Dynamic Voltage
Scaling Algorithms with PACE. InACM SIGMET-
RICS, June 2001.

[7] J. Lorch and A. Smith. Operating system modifica-
tions for task-based speed and voltage scheduling. In
MobiSys, May 2003.

[8] D. Mossé, H. Aydin, B. Childers, and R. Melhem.
Compiler-Assisted Dynamic Power-aware Scheduling
for Real-Time Applications. InCOLP, October 2000.

[9] P. Pillai and K. G. Shin. Real-time Dynamic Volt-
age Scaling for Low-Power Embedded Operating Sys-
tems. InSOSP, pages 89–102, October 2001.

[10] C. Rusu, R. Xu, R. Melhem, and D. Mossé. Energy-
Efficient Policies for Request-Driven Soft Real-Time
Systems. InECRTS, Catania, Italy, July 2004.

[11] Intel xscale microarchitecture. http://developer.in
tel.com/design/intelxscale/benchmarks.htm.

[12] R. Xu, D. Mossé, and R. Melhem. Minimizing Ex-
pected Energy in Real-Time Embedded Systems. In
EMSOFT, Jersey City, New Jersey, September 2005.

[13] R. Xu, C. Xi, R. Melhem, and D. Mossé. Practi-
cal PACE for Embedded Systems. InEMSOFT, Pisa,
Italy, September 2004.

[14] F. Yao, A. Demers, and S.Shankar. A Scheduling
Model for Reduced CPU Energy. InFOCS, pages
374–382, 1995.

6

