
Integrated Device Scheduling and Processor Voltage Scaling for System-wide
Energy Conservation

Hui Cheng and Steve Goddard
Department of Computer Science and Engineering

University of Nebraska — Lincoln
Lincoln, NE 68588-0115

{hcheng, goddard}@cse.unl.edu

Abstract

The challenge in conserving energy in embedded real-time
systems is to reduce power consumption while preserving
temporal correctness. Previous research has focused on
power conservation for either the processor or I/O devices
alone. The system-wide energy conservation has received
little attention. In this paper, we analyze the problem of
system-wide energy-efficient scheduling for hard real-time
systems based on the preemptive periodic task model with
non-preemptive shared resources. We propose an online
system-wide energy-efficient scheduling algorithm System-
wide Energy-Aware EDF (SYS-EDF), which integrates Dy-
namic Power Management (DPM) for I/O devices and Dy-
namic Voltage Scaling (DVS) for the processor. An evalua-
tion of SYS-EDF shows that it yields significant energy sav-
ings with respect to DVS alone or DPM alone techniques.

1 Introduction

Embedded real-time systems often consist of a battery-
operated microprocessor system with Input/Output (I/O) de-
vices and a limited battery life. Energy conservation tech-
niques are thus needed to extend their lifetimes. The need to
prolong system lifetime has resulted in much work done in
energy-efficient task scheduling for real-time systems.

In the last decade, much work has been done on
processor-based power management techniques. Dynamic
Voltage Scaling (DVS) is one of the most popular techniques
to reduce the processor energy consumption. DVS-based
real-time scheduling algorithms can effectively reduce the
processor energy consumption by lowering the processor
speed, while still guarantee that all jobs meet their deadlines.
However, DVS-based algorithms reduce the dynamic power
consumption of the processor at the cost of increased execu-
tion time, which in turn increases the I/O device standby en-
ergy consumption. It has been observed [4, 11] that aggres-
sively lowering the processor speed may increase the overall

system energy consumption rather than decreasing it.
The energy consumption of I/O devices can be reduced

by shutting down devices under certain conditions. This
method is commonly known as Dynamic Power Manage-
ment (DPM). There have been some efforts [8, 9] in de-
veloping energy-efficient device scheduling algorithms that
minimize the I/O device energy consumption for real-time
systems. However, none of them considered the energy con-
sumption of processors. As with the DVS alone scheduling
algorithms, DPM alone cannot guarantee the overall system
energy consumption is minimized.

In this paper, we analyze the problem of system-wide en-
ergy conservation for hard real-time systems based on the
preemptive periodic task model with non-preemptive shared
resources. Here we define the system-wide energy consump-
tion as the sum of the processor energy consumption and the
I/O device (including memory 1) energy consumption. We
propose an online system-wide energy-efficient scheduling
algorithm, System-wide Energy-Aware EDF (SYS-EDF),
which integrates device scheduling and processor voltage
scaling to reduce the overall system energy consumption.

The rest of this paper is organized as follows. Section 2
discusses related work. The problem of energy-aware I/O
device scheduling is analyzed in Section 3. Section 4 de-
scribes the SYS-EDF algorithm. Section 5 describes how
we evaluated our system and presents the results. Section 6
presents our conclusions and describes future work.

2 Related Work
Compared to the research of processor-based energy con-

servation techniques or I/O-based energy conservation tech-
niques, the research on system-wide energy conservation has
received little attention. Only a few papers [4, 11] address
this issue. In these papers, the negative effect of lowering
processor speed is considered. Optimal slowdown factors of

1Some modern DRAM chips can be put in a power down state in which
only the self-refresh circuitry is active to prevent data loss.

1

the processor speed to minimize the overall system energy
consumption are computed and used as the lower-bound of
the processor speed. They both achieve significant energy
savings compared to DVS alone algorithms. Our work dif-
fers from the previous work in following aspects:

1. Our work supports periodic task sets with non-
preemptive shared resources. In the previous work, all
tasks were assumed to be fully preemptive. In prac-
tice, non-preemptive shared resources are pervasive in
real-world applications. For example, a job that per-
forms an uninterruptible I/O operation can block the
execution of all jobs with higher priorities. Thus the
time for the uninterruptible I/O operation needs to be
treated as a non-preemptive resource access. Other re-
sources besides I/O devices include critical sections of
code, reader/writer buffers, etc.

2. Our work considers the problem of energy-efficient de-
vice scheduling and proposes a device scheduling al-
gorithm, i.e., Conservative Energy-Aware EDF (CEA-
EDF). [4] and [11] made simplified assumption for the
device scheduling. For example, [4] assumed that there
is no delay for device state transition. Therefore, an
aggressive device scheduling algorithm which turns off
devices whenever they are not in use was implied in
this work. However, this aggressive device scheduling
is not applicable to hard real-time systems if devices
that have non-zero transition delays are used. Similarly,
[11] did not propose DPM for I/O devices.

The method proposed in this paper provides a energy-
efficient device scheduling algorithm, CEA-EDF, for peri-
odic task sets with non-preemptive shared resources. The
optimal processor speed is then analyzed based on the pro-
posed device scheduling algorithm. Finally, the SYS-EDF
algorithm is proposed to reduce the overall system energy
consumption by integrating CEA-EDF and the processor
voltage scaling. To the best of our knowledge, no previous
publication has addressed the same problem.

3. Energy-aware device scheduling
I/O devices usually have fewer power states than proces-

sors. Throughout this paper, we assume that a device has
two states: active and idle. In a real-time system, in order to
guarantee that jobs will meet their deadlines, a device cannot
be made idle without knowing when it will be requested by
a job, but, the precise time at which an application requests
the operating system for a device is usually not known. Even
without knowing the exact time at which requests are made,
we can safely assume that devices are requested within the
time of execution of the job making the request. Therefore,
our method is based on inter-task device scheduling rather
than intra-task scheduling. That is, the scheduler does not
put devices in sleep while tasks that require them are being
executed, even though there is no I/O requests at that time.

As discussed before, the energy-aware device schedul-
ing algorithm needs to support the preemptive scheduling
of periodic tasks with non-preemptive shared resources.
However, the only known published energy-aware device
scheduling algorithm for preemptive schedules, Maximum
Device Overlap (MDO) [9], does not address the issue of
resource blocking. As an offline method, it is difficult to in-
tegrate a resource accessing policy into MDO because it is
hard to predict exact points that jobs access resources at the
offline phase. It is possible that a seemingly feasible offline
job schedule causes jobs to miss their deadlines at runtime.

An obvious online approach is to aggressively shut down
devices whenever they are not needed; and start them as
soon as they are needed, which is called the Aggressive Shut
Down (ASD) algorithm [2]. Unfortunately, ASD cannot
be directly applied to hard real-time systems, because the
power consumption and the delay of the device state transi-
tion is usually too large to be neglected.

In our previous study [2], some online device scheduling
algorithms that support preemptive schedules with shared re-
sources are proposed. Among them, CEA-EDF can be used
together with a DVS-based scheduler without any modifica-
tion. As we will see shortly, CEA-EDF is independent of
processor speed change, which makes it ideal for easy inte-
gration with DVS.

3.1 Device energy model

Associated with each device λi are the following parame-
ters: the transition time from the idle state to the active state
represented by twu(λi); the transition time from the active
state to the idle state represented by tsd(λi); the energy con-
sumed per unit time in the active and idle states represented
by Pa(λi) and Pi(λi) respectively; the energy consumed per
transition from the active state to the idle state represented
by Esd(λi); and the energy consumed per transition from
the idle state to the active state represented by Ewu(λi). We
assume that for any device, the state switch can only be per-
formed when the device is in a stable state, i.e., the idle state
or the active state. Therefore, the total energy consumed by
a device λi is given by,
Eλi

= Pa × Ta(λi) +Pi × Ti +Esd ×Nsd +Ewu ×Nsw (1)

where, Ta is the time that λi is in the active state; Ti is the
time that λi is in the idle state; Nsd is the number of the
transition of the device from active to idle; and Nwu is the
number of the transition of the device from idle to active.

3.2. Energy-aware device scheduling
CEA-EDF is a simple, online energy-aware device

scheduling algorithm for hard real-time systems. All de-
vices that a job needs are active at or before the job is re-
leased. Thus devices are safely shut down without affecting
the schedulability of tasks.

2

1 Device scheduling at time t:
2 If (t: instance when job Ji,j is completed)
3 If (∃λk , λk = active and Treq(λk, t)− t > BE(λk))
4 λk → idle;
5 Up(λk)← Treq(λk, t)− twu(λk);
6 End
7 End
8 If (t: ∃λk, λk = idle and Up(λk) = t)
9 λk → active;

10 Up(λk)← −1; // Clear the power up timer for λk
11 End

Figure 1. The CEA-EDF algorithm. Up(λk) is
the power up time set to λk, at when the device
will be powered up.

Because of the energy consumption associated with the
device power state transition, it is not energy-efficient to fre-
quently perform the power state transition. A break-even
time is used to represent the minimum inactivity time re-
quired to compensate for the cost of entering and exiting the
idle state. We let BE(λi) denote the break-even time of
device λi hereafter. The computation of BE(λi) using our
device energy model can be found in [2]. It is clear that if a
device is idle for less than the break-even time, it is not worth
performing the state switch. Therefore, CEA-EDF makes
decisions of device state transition based on the break-even
time rather than device state transition delay.

Next, we define the next device request time that is used
in keeping track of the earliest time that a device is required.

Definition 3.1. Next Device Request Time. The next device
request time is denoted by Treq(λk, t) and is the earliest time
that a device λk is requested by any uncompleted job. Since
a job can only use a device after the job is released, the next
device request time of a device λk is given by

Treq(λk, t) =Min(R(Ji,j)) (2)

where Ji,j is any uncompleted job that requires device λk

and R(Ji,j) is the release time of job Ji,j .

With CEA-EDF, a device λi is switched to the low power
state at time t when Treq(λi, t) − t > BE(λi). CEA-
EDF sets a power up time, Up(λi), for device λi when
λi is switched to the idle state. For any idle device, it is
switched back to the active state if the power up time Up(λi)
is equal to the current time t. The CEA-EDF scheduling al-
gorithm then can be described as in Figure 1, and is invoked
at scheduling points and when a power up time is reached.
We define scheduling points as time instances at which jobs
are released, completed, or exit critical sections. An exam-
ple of CEA-EDF scheduling is illustrated in Figure 2.

4. System-wide energy-efficient scheduling
In this section, we first provide a power model for a typi-

cal DVS processor. Then we present a system-wide energy-

1λ

2λ

���

�����

���

�����

1,1J

1,2J

� � � � ��

� �	�

�
��

� �� �� ���� �� �� ��

Figure 2. CEA-EDF scheduling example; (a)
J1,1 is released at 6 and uses device λ1. J2,1

is released at 2 and uses device λ2. J1,1 has
a higher priority than J2,1. (b) the device state
transition with the CEA-EDF algorithm.

efficient task scheduling algorithm, SYS-EDF, which inte-
grates CEA-EDF and processor voltage scaling.

4.1 DVS processor energy model

In a CMOS circuit, the overall power consumption con-
sists of dynamic power consumption and static power con-
sumption. For a DVS processor, the dynamic power con-
sumption can be given by,

PAC = CeffVdd
2
f (3)

where Ceff is the switched capacitance, Vdd is the supply
voltage and f is the operating frequency. The relationship of
f and Vdd is given by [6]

f = (LdK6)
−1((1 +K1)Vdd +K2Vbs − Vth1)

α (4)

where Vbs is the body bias voltage and K1, K2, K6, Ld, Vth1

and α are technology constant parameters.
Several leakage sources contribute to the total static

power consumption. According to [6], the leakage power
dissipation is given by,

PDC = Lg(VddIsubn + |Vbs|Ij) (5)

where Lg is the number of devices in the circuit, Isubn is
the subthreshold current, and Ij is the reverse bias junction
current. The formal mathematical formulation and detailed
explanations of related technical parameters can be found in
[6]. The total power consumption of a processor is given by,

Pcpu =

{

PAC + PDC + Pon CPU is active
0 CPU is not active (6)

where Pon is an inherent power cost in keeping the processor
on [3]. We assume that a processor does not consume energy
when it is not in the active state.

Since the voltage transition delay of a processor is very
short, we assume that the overhead incurred in changing the
processor speed is negligible. The same assumption is made
in previous works [7, 10, 11].

3

4.2. System-wide optimal processor speed

We let ν denote the normalized processor speed. That is,
the ratio of the current processor speed to the maximal pro-
cessor speed. As with previous work [7, 10, 11], we assume
that the processor speed is approximately proportional to the
current operating frequency f . Thus ν can be represented by
f/fhigh, where fhigh is the maximum operating frequency.
We assume that a DVS processor can provide m discrete op-
erating frequency represented by {f1, f2, . . . , fm = fhigh}.

Because of the standby energy dissipation of I/O de-
vices, the lowest processor speed is not necessarily the most
energy-efficient speed as assumed in previous DVS-alone
scheduling algorithms. The leakage power dissipation of the
processor and the standby energy dissipation of I/O devices
increase with the extended task lifetime. Let Λ(t) be the ac-
tive device set that contains all devices that are in the active
state at time t. Note that with the CEA-EDF device schedul-
ing algorithm, devices not required by the current execut-
ing job may be kept in the active state to ensure the system
schedulability. As shown in Figure 2, all devices in Λ(t) are
kept in the active state until the current job is completed.

Suppose that a processor can complete 1 unit workload
in 1 unit time with the highest operating frequency, then the
processor will take 1/ν time units to complete 1 unit work-
load with a processor speed of ν. Next, we introduce energy
efficiency scale to compare the overall system energy effi-
ciency to complete 1 unit workload with different processor
speeds. The energy efficiency scale is denoted by ES(ν,Λ)
and is modelled by,

ES(ν,Λ(t)) =
Pcpu(ν)

ν
+
1

ν

∑

λk∈Λ(t)

(Pa(λk)− Pi(λk)) (7)

where Pcpu(ν) is the processor energy consumption rate
with a given processor speed ν, which can be acquired
from the processor energy model presented in Section 4.1.
Pa(λk) − Pi(λk) is the difference of the energy consump-
tion rate of device λk in the active state and the idle state. We
use this difference rather than Pa(λk) alone to evaluate how
much energy can be saved by putting λk in the idle state.

The processor speed that can minimize the energy ef-
ficiency scale is the system-wide optimal processor speed.
We let νopt(Λ(t)) denote the optimal processor speed for a
given active device set Λ(t). Figure 3 shows the energy effi-
ciency scale for three different active device sets. The CPU
is based on Transmeta Crusoe processor with 70nm tech-
nology 2 [3, 6]. The technical parameters for these devices
can be found in Table 1. It can be seen from Figure 3 that
the energy efficiency scale varies with different active device
sets, and so does the optimal processor speed. For example,
the most energy efficient processor speed is 0.4 when only
the Mobile RAM is in the active state, while the optimal
processor speed is 0.9 when both the Mobile RAM and the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3
x 10−9

Normalized processor speed

En
er

gy
 e

ffi
cie

nc
y

sc
al

e

Mobile RAM
Mobile RAM+SimpleTech flash
Mobile RAM+MaxStream wireless module

Figure 3. ES(ν,Λ(t)) of different normalized
processor speeds for three active device sets.

MaxStream wireless module are in the active state.
The system-wide optimal processor speed νopt is com-

puted offline and retrieved at runtime. For a given active
device set Λ(t), νopt(Λ(t)) can be acquired by computing
ES(ν,Λ(t)) for all possible ν values. The speed that mini-
mizes ES(ν,Λ(t)) is selected to be νopt(Λ(t)). Since mod-
ern DVS processors provide finite discrete operating fre-
quencies, this computation can be done in O(m) time com-
plexity for each given Λ(t), where m is the number of op-
erating frequencies that the processor can provide. Let K
denote the number of devices in the system, then there are
at most 2K possible sets for Λ(t). Therefore, the compu-
tational complexity of computing νopt for all possible Λ(t)
is O(m × 2K). With all pre-computed νopt(Λ(t)) stored in
memory, retrieving νopt for any Λ(t) at runtime can be done
in O(1) time.

4.3. SYS-EDF

The processor voltage scaling in SYS-EDF is based on
the Dual Speed (DS) and the Dual Speed Dynamic Reclaim-
ing (DSDR) algorithms proposed by Zhang et.al, [10]. The
DS algorithm aims to minimize the dynamic energy con-
sumption of the processor for real-time periodic tasks with
non-preemptive blocking sections. The DSDR algorithm ex-
tends the DS algorithm by dynamically collecting unused
run time for further slow down.

However, DS and DSDR considered only the dynamic
energy dissipation of the processor. Based on the previous
analysis, we develop the SYS-EDF algorithm, which im-
proves DS and DSDR to reduce the overall system energy
consumption. For the space limitation, we only discuss the
basic improvement done to the DS algorithm in this paper.
The basic idea is : the SYS-EDF algorithm keeps track of
the active device set and computes the corresponding opti-
mal processor speed. SYS-EDF uses the DS algorithm to

2This is a processor model based on the technology trends [6].

4

1 Initialize:
2 ν ← max(L, νopt(Λ(t)); END H ← −1;
3 H and L are pre-computed processor speeds [10];
4 Scheduling at time t:
5 If (t: instance when job Ji,j is completed)
6 update Λ(t);
7 If (there is no pending job) ν ← 0;
8 Else ν ← max(ν, νopt(Λ(t)));
9 End

10 End
11 If (t: instance when job Ji,j is released)
12 update Λ(t);
13 ν ← max(ν, νopt(Λ(t)));
14 If (Prio(Ji,j) > Prio(Jcurr) and Ji,j is blocked by Jcurr)
15 ν ← max(H, νopt(Λ(t)));
16 End H ← max(End H,Deadline(Jcurr));
17 End
18 End
19 If (t: instance when t = End H)
20 End H ← −1;
21 ν ← max(L, νopt(Λ(t));
22 End
23 Schedule devices by CEA-EDF ;
24 Schedule jobs by EDF(SRP);

Figure 4. The simplified SYS-EDF algorithm.

adjust the processor speed with only one limitation: the pro-
cessor speed is never set below the optimal processor speed.
The improvement to the DSDR algorithm follows a similar
approach, but uses a different dynamic reclaiming algorithm
because more than two processor speeds are utilized in SYS-
EDF.

The SYS-EDF algorithm is presented in Figure 4. With
the proposed device scheduling algorithm, i.e., CEA-EDF,
the active device set changes only at the time instances when
a job is completed or a new job is released (line 6,12). As
with [10], a pre-computed high speed H and a pre-computed
low speed L are used in SYS-EDF. Because of the space
limitation, we do not present the computation of H and L
in this paper. We refer the reader to [10] for the detailed
explanation and computation. Since H , L and νopt(Λ(t))
are pre-computed, the overhead of performing SYS-EDF is
very low.

4.4. Schedulability
Theorem 4.1. Suppose n periodic tasks are sorted by their
periods. They are schedulable by SYS-EDF if

∀k, 1 ≤ k ≤ n,

k
∑

i=1

E(Ti)

P (Ti)
+

B(Tk)

P (Tk)
≤ 1, (8)

where E(Tk) and P (Tk) are the execution time and period
of task Tk respectively; and B(Tk) is the maximal length
that a job in Tk can be blocked.

Proof: The SYS-EDF algorithm consists of a energy-
efficient device scheduling algorithm (CEA-EDF) and a pro-
cessor voltage scaling algorithm. With the CEA-EDF algo-
rithm, a device λk is guaranteed to be in the active state when

Device Pa (W) Pi (W) Ewu, Esd (mJ) 3

Realtek Ethernet Chip 0.187 0.085 1.25
MaxStream Wireless module 0.75 0.005 4

IBM Microdrive 1.3 0.1 6
Fujitsu MHL2300AT Hard disk 2.3 1.0 3

SimpleTech Flash Card 0.225 0.02 0.2
Mobile-RAM 0.075 0.00175 ≈ 0

Table 1. Device Specifications.

any jobs requiring λk are released. Therefore, CEA-EDF
does not affect the schedulability of any systems.

With the processor voltage scaling algorithm presented
in Figure 4, the processor speed is set to the higher speed
of the optimal processor speed and the speed when sched-
uled with the DS scheduling algorithm (line 2,8,15,21). In
other words, the SYS-EDF algorithm keeps the processor at
a speed no less than the speed when scheduled with the DS
algorithm. Since Theorem 4.1 has been proved true for the
DS scheduling algorithm in [10], Theorem 4.1 is also true
for the SYS-EDF algorithm.

5 Evaluation
This section presents evaluation results for the SYS-EDF

algorithm. Section 5.1 describes the evaluation methodology
used in this study. Section 5.2 describes the evaluation of
SYS-EDF with various system utilizations.

5.1. Methodology
We evaluated the SYS-EDF algorithm using an event-

driven simulator. This approach is consistent with evaluation
approaches adopted by other researches for energy-aware
scheduling [8, 4, 11].

The power requirements and state switching times for de-
vices were obtained from data sheets provided by the man-
ufacturer. The devices used in experiments are listed in Ta-
ble 1. The DVS processor we simulated is based on Trans-
meta Crusoe processor with 70nm technology [3, 6]. We as-
sume that the processor supports discrete voltage from 0.5V
to 1.0V in steps of 0.05V . The normalized energy saving is
used to evaluate the energy savings of the algorithms. The
normalized energy saving is the ratio of energy saving under
a energy-conservation algorithm to the energy consumption
when no energy-conservation technique is used, wherein all
devices remain in the active state over the entire simulation.

In all experiments, we used randomly generated task sets
to evaluate the performance of all algorithms. All task sets
are pretested to satisfy the schedulability condition shown
in Equation (8). Each generated task set contained 1 ∼ 10
tasks. Periods of tasks are chosen from [100, 1000]. Each

3Most vendors report only a single switching energy consumption. Thus
we used this data for both Ewu and Esd. The sources of these data can be
found in [2].

5

0−0.1 0.1−0.2 0.2−0.3 0.3−0.4 0.4−0.5 0.5−0.6 0.6−0.7 0.7−0.8 0.8−0.9 0.9−1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

System utilization

No
rm

iliz
ed

 E
ne

rg
y

Sa
vin

g

Mean energy saving under different system utilizations

CEA−EDF
SYS−EDF
DS+CEA−EDF
DS

Figure 5. Mean normalized energy savings of
different system utilization settings.

task in a task set required the RAM module and additional
0 ∼ 2 other devices from Table 1. Critical sections of all
jobs were randomly generated. We repeated each exper-
iment 500 times and present the mean value. During the
whole experiment, we assume that the actual execution time
of a task is equal to the WCET.

We did not measure scheduling overhead in a real system
since all algorithms were evaluated with simulations. In-
stead, we compared the scheduling overhead of SYS-EDF
with respect to EDF(SRP) in our simulations. We used rel-
ative scheduling overhead to evaluate the scheduling over-
head of SYS-EDF. Let ρ denote the relative scheduling over-
head, which is given by

ρ =
scheduling overhead with SYS-EDF

scheduling overhead with EDF(SRP)
− 1

The mean relative scheduling overhead of SYS-EDF is
3.2%, verifying that the overhead of SYS-EDF is low.

5.2. Average energy savings
To better evaluate the SYS-EDF algorithm, we compare

SYS-EDF with three other algorithms for each simulation:
(1) CEA-EDF is the algorithm that only performs DPM for
devices; (2) DS is the DVS-alone algorithm proposed in
[10], which considers only the dynamic energy conserva-
tion for processors; and (3) DS +CEA-EDF is the straight-
forward integration of (1) and (2), without considering the
system-wide energy-efficient speed. Since [4] and [11] do
not address the problem of resource blocking and the nega-
tive effect of device transition delays on system schedulabil-
ity, we did not compare with them in this evaluation.

Figure 5 shows simulation results of the mean normalized
energy saving for the SYS-EDF and other algorithms under
different system utilizations. It can be seen that SYS-EDF
saves more energy than the other algorithms. SYS-EDF can
reduce the system energy consumption by up to 10% over
DS +CEA-EDF. In most cases, as the system utilization in-
creases, the normalized energy savings decreases. The ra-

tionale for this is that as tasks execute more, the amount
of time devices can be kept in idle mode decreases and the
processor voltage needs to be kept at a high value. As the
system utilization approaches 100%, SYS-EDF, CEA-EDF
and DVS+DPM perform comparable to each other, because
there is not much space for processor energy saving and all
of them merely perform DPM for devices.

6 Conclusion
This paper presents a system-wide energy-efficient

scheduling algorithm, SYS-EDF, which supports the pre-
emptive scheduling of periodic tasks with non-preemptive
shared resources. SYS-EDF consists of a practical DPM al-
gorithm for I/O devices and a corresponding processor volt-
age scheduling algorithm. The SYS-EDF algorithm pro-
vides remarkable power savings by wisely setting the pro-
cessor speed to balance the energy consumption of all com-
ponents in the system. The evaluation of SYS-EDF shows
that it yields significant energy savings with respect to DVS
alone or DPM alone techniques or the straightforward inte-
gration of DVS and DPM.

References

[1] Baker, T.P., “Stack-Based Scheduling of Real-Time Pro-
cesses,” Real-Time Systems, 3(1):67-99, March 1991.

[2] Cheng, H. and Goddard, S., “Online Energy-Aware I/O De-
vice Scheduling for Hard Real-Time Systems with Shared
Resources”, Technical Report, 2005, http://csce.
unl.edu/∼hcheng/TR CEAEDF EASD.pdf

[3] Jejurikar, R., Pereira, C., Gupta, R., “Leakage aware dynamic
voltage scaling for real-time embedded systems”, 41st an-
nual conference on Design automation, 2004.

[4] Jejurikar, R., Gupta, R., “Dynamic Voltage Scaling for Sys-
temwide Energy Minimization in Real-Time Embedded Sys-
tems”, Symp. on Low power electronics and design, 2004.

[5] Liu and Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment”, Journal of the
ACM, 20(1), January, 1973.

[6] Martin, S., Flautner, K., Mudge, T., Blaauw, D., “Com-
bined dynamic voltage scaling and adaptive body biasing
for lower power microprocessors under dynamic workloads”,
IEEE/ACM intl. conf. on Computer-aided design, 2002.

[7] Qadi, A., Goddard, S., Farritor, S., “A Dynamic Voltage Scal-
ing Algorithm for Sporadic Tasks”, IEEE Real-Time Systems
Symp., 2003.

[8] Swaminathan, V., Chakrabarty, K., and Iyengar, S.S., “Dy-
namic I/O Power Management for Hard Real-time Systems”
9th Intl. Symp. on Hardware/Software Codesign, 2001.

[9] Swaminathan, V., and Chakrabarty, K., “Pruning-based,
Energy-optimal, Deterministic I/O Device Scheduling for
Hard Real-Time Systems”, ACM Transactions on Embedded
Computing Systems, 4(1):141-167, February 2005.

[10] Zhang, F., Chanson, S., “Processor Voltage Scheduling for
Real-Time Tasks with Non-Preemptible Sections”, IEEE
Real-Time Systems Symp., 2002.

[11] Zhuo, J., Chakrabarti, C., “System-Level Energy-Efficient
Dynamic Task Scheduling”, 42nd annual conf. on Design au-
tomation, 2004.

6

